46 research outputs found

    Biophotonics methods for functional monitoring of complications of diabetes mellitus

    Get PDF
    The prevalence of diabetes complications is a significant public health problem with a considerable economic cost. Thus, the timely diagnosis of complications and prevention of their development will contribute to increasing the length and quality of patient life, and reducing the economic costs of their treatment. This article aims to review the current state-of-the-art biophotonics technologies used to identify the complications of diabetes mellitus and assess the quality of their treatment. Additionally, these technologies assess the structural and functional properties of biological tissues, and they include capillaroscopy, laser Doppler flowmetry and hyperspectral imaging, laser speckle contrast imaging, diffuse reflectance spectroscopy and imaging, fluorescence spectroscopy and imaging, optical coherence tomography, optoacoustic imaging and confocal microscopy. Recent advances in the field of optical noninvasive diagnosis suggest a wider introduction of biophotonics technologies into clinical practice and, in particular, in diabetes care units

    Striking Denervation of Neuromuscular Junctions without Lumbar Motoneuron Loss in Geriatric Mouse Muscle

    Get PDF
    Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia

    Phosphoprotein Associated with Glycosphingolipid-Enriched Microdomains Differentially Modulates Src Kinase Activity in Brain Maturation

    Get PDF
    Src family kinases (SFK) control multiple processes during brain development and function. We show here that the phosphoprotein associated with glycosphigolipid-enriched microdomains (PAG)/Csk binding protein (Cbp) modulates SFK activity in the brain. The timing and localization of PAG expression overlap with Fyn and Src, both of which we find associated to PAG. We demonstrate in newborn (P1) mice that PAG negatively regulates Src family kinases (SFK). P1 Pag1-/- mouse brains show decreased recruitment of Csk into lipid rafts, reduced phosphorylation of the inhibitory tyrosines within SFKs, and an increase in SFK activity of >/ = 50%. While in brain of P1 mice, PAG and Csk are highly and ubiquitously expressed, little Csk is found in adult brain suggesting altered modes of SFK regulation. In adult brain Pag1-deficiency has no effect upon Csk-distribution or inhibitory tyrosine phosphorylation, but kinase activity is now reduced (−20–30%), pointing to the development of a compensatory mechanism that may involve PSD93. The distribution of the Csk-homologous kinase CHK is not altered. Importantly, since the activities of Fyn and Src are decreased in adult Pag1-/- mice, thus presenting the reversed phenotype of P1, this provides the first in vivo evidence for a Csk-independent positive regulatory function for PAG in the brain

    Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells

    No full text
    Mesoporous carbon with graphitic pore walls is highly desired in many electrochemical applications such as fuel cells and lithium ion batteries. In this study, ordered graphitic mesoporous carbon was prepared by chemical vapor deposition (CVD) of benzene in the pores of mesoporous SB A-15 pure-silica template without loading any catalytic species. Nitrogen adsorption, small-angle X-ray scattering, X-ray diffraction, Raman spectrometry, field-emission scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis techniques were used to characterize the samples. It was observed that the CVD method affords highly ordered mesoporous carbon with graphitic pore walls and low carbon shrinkage because of the high degree of infiltration of pyrolytic carbon. The catalytic performance of the mesoporous carbon as a support for Pt catalyst in room-temperature methanol oxidation was examined. Results show that the specific activity of the Pt catalyst supported on the mesoporous carbon is higher than that of a commercial Pt catalyst form E-TEK
    corecore