54 research outputs found

    Two-dimensional lattice Boltzmann simulations of vesicles with viscosity contrast

    Get PDF
    We present a numerical approach to simulate the dynamics of viscous vesicles (their internal and external fluids have different viscosities). The flow is computed using the lattice Boltzmann method and the fluid-vesicle two-way coupling is achieved using the immersed boundary method. The viscosity contrast (defined as the ratio of the internal to the external viscosities) is included using a geometrical algorithm that detects if a fluid node is either located inside or outside a vesicle. Our two-dimensional simulations successfully reproduce the tank-treading and tumbling dynamical states known for a viscous vesicle when it is subjected to simple shear flow. A good qualitative agreement between our simulation results and literature data is obtained. Moreover, we quantitatively analyze how inertia influences the dynamics of a vesicle and as an outlook we present an application of our method to the flow of multiple viscous vesicles in a microfluidic constriction

    Study Of Inertia And Stoichiometric Effect On Surface Diffusion By Monte Carlo Method

    Get PDF
    In this work, we investigate the inertia and stoichiometric effect on surface diffusion of adsorbates particles. The study is done by means of Monte-Carlo simulation in the framework of the lattice gas model. Only first neighboring repulsive pair interaction is considered. We concentrate on the behaviour of the tracer diffusion coefficient Dt(θ), as a function of surface coverage θ in the case where two type of particles A and B are adsorbed. A and B are only different by their mass. The results shows that θt ordering phenomenon is not strongly influenced. However the diffusion process is decreased by inclusion of heavy particles.w.In this work, we investigate the inertia and stoichiometric effect on surface diffusion of adsorbates particles. The study is done by means of Monte-Carlo simulation in the framework of the lattice gas model. Only first neighboring repulsive pair interaction is considered. We concentrate on the behaviour of the tracer diffusion coefficient Dt(θ), as a function of surface coverage θ in the case where two type of particles A and B are adsorbed. A and B are only different by their mass. The results shows that θt ordering phenomenon is not strongly influenced. However the diffusion process is decreased by inclusion of heavy particles.w

    How does confinement affect the dynamics of viscous vesicles and red blood cells?

    Get PDF
    Despite its significance in microfluidics, the effect of confinement on the transition from the tanktreading (steady motion) to the tumbling (unsteady motion) dynamical state of deformable microparticles has not been studied in detail. In this paper, we investigate the dynamics of a single viscous vesicle under confining shear as a general model system for red blood cells, capsules, or viscous droplets. The transition from the tank-treading to the tumbling motion can be triggered by the ratio between internal and external fluid viscosities. Here, we show that the transition can be induced solely by reducing the confinement, keeping the viscosity contrast constant. The observed dynamics results from the variation of the relative importance of viscous-, pressure-, and lubrication-induced torques exerted upon the vesicle. Our findings are of interest for designing future experiments or microfluidic devices: the possibility to trigger the tumbling-to-tank-treading transition either by geometry or viscosity contrast alone opens attractive possibilities for microrheological measurements as well as the detection and diagnosis of diseased red blood cells in confined flow

    Why do red blood cells have asymmetric shapes even in a symmetric flow?

    Get PDF
    Understanding why red blood cells (RBCs) move with an asymmetric shape (slipperlike shape) in small blood vessels is a long-standing puzzle in blood circulatory research. By considering a vesicle (a model system for RBCs), we discovered that the slipper shape results from a loss in stability of the symmetric shape. It is shown that the adoption of a slipper shape causes a significant decrease in the velocity difference between the cell and the imposed flow, thus providing higher flow efficiency for RBCs. Higher membrane rigidity leads to a dramatic change in the slipper morphology, thus offering a potential diagnostic tool for cell pathologies

    Phase-field modelling of dendritic growth behaviour towards the cooling / heating of pure nickel

    Get PDF
    We are interested in modelling the dendritic growth occurring during the solidification process of a pure material and especially to see the effect of the cooling / heating on the growth behaviour of this dendrite. For this purpose we use a phase-field model. The obtained partial differential equations are solved numerically by a finite difference method. In order to appreciate the shape of the resulting dendrites we expose some figures obtained from simulations in 2D.We are interested in modelling the dendritic growth occurring during the solidification process of a pure material and especially to see the effect of the cooling / heating on the growth behaviour of this dendrite. For this purpose we use a phase-field model. The obtained partial differential equations are solved numerically by a finite difference method. In order to appreciate the shape of the resulting dendrites we expose some figures obtained from simulations in 2D

    Dynamics and rheology of highly deflated vesicles

    Get PDF
    We study the dynamics and rheology of a single two-dimensional vesicle embedded in a linear shear flow by means of numerical simulations based on the boundary integral method. The viscosities inside and outside the vesicle are supposed to be identical. We explore the rheology by varying the reduced area, i.e. we consider more and more deflated vesicles. Effective viscosity and normal stress differences are computed and discussed in detail, together with the inclination angle and the lateral membrane velocity (tank-treading velocity). The angle is found, surprisingly, to reach a zero value (flow alignment) at a critical reduced area even in the absence of viscosity contrast. A Fast Multipole Method is presented that enables to run efficiently simulations with a large number of vesicles. This method prevails over the direct summation for a number of mesh points beyond a value of about 103. This offers an interesting perspective for simulation of semi-dilute and concentrated suspensions

    Lateral migration of a 2D vesicle in unbounded Poiseuille flow

    Get PDF
    The migration of a suspended vesicle in an unbounded Poiseuille flow is investigated numerically in the low Reynolds number limit. We consider the situation without viscosity contrast between the interior of the vesicle and the exterior. Using the boundary integral method we solve the corresponding hydrodynamic flow equations and track explicitly the vesicle dynamics in two dimensions. We find that the interplay between the nonlinear character of the Poiseuille flow and the vesicle deformation causes a cross-streamline migration of vesicles towards the center of the Poiseuille flow. This is in a marked contrast with a result [L.G. Leal, Ann. Rev. Fluid Mech. 12, 435(1980)]according to which the droplet moves away from the center (provided there is no viscosity contrast between the internal and the external fluids). The migration velocity is found to increase with the local capillary number (defined by the time scale of the vesicle relaxation towards its equilibrium shape times the local shear rate), but reaches a plateau above a certain value of the capillary number. This plateau value increases with the curvature of the parabolic flow profile. We present scaling laws for the migration velocity.Comment: 11 pages with 4 figure

    Dumbbell transport and deflection in a spatially periodic potential

    Full text link
    We present theoretical results on the deterministic and stochastic motion of a dumbbell carried by a uniform flow through a three-dimensional spatially periodic potential. Depending on parameters like the flow velocity, there are two different kinds of movement: transport along a potential valley and stair-like motion oblique to the potential trenches. The crossover between these two regimes, as well as the deflection angle, depends on the size of the dumbbell. Moreover, thermal fluctuations cause a resonance-like variation in the deflection angle as a function of the dumbbell extension.Comment: 5 pages, 8 figure

    Structuring with anisotropic colloids

    Get PDF
    Structure is an important factor in food. One of the ways to provide structure to foods is by using bubbles and foams. However, they need to be stabilized. One way of doing this is by covering them with microscopic rods. These rods self-assemble at the surface, yielding a stable bubble. The goal of this work is to gain a better understanding into how this self-assembly works using analytical calculations, experiments and simulations
    corecore