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Despite its significance in microfluidics, the effect of confinement on the transition from the tank-

treading (steady motion) to the tumbling (unsteady motion) dynamical state of deformable micro-

particles has not been studied in detail. In this paper, we investigate the dynamics of a single viscous

vesicle under confining shear as a general model system for red blood cells, capsules, or viscous

droplets. The transition from the tank-treading to the tumbling motion can be triggered by the ratio

between internal and external fluid viscosities. Here, we show that the transition can be induced solely

by reducing the confinement, keeping the viscosity contrast constant. The observed dynamics results

from the variation of the relative importance of viscous-, pressure-, and lubrication-induced torques

exerted upon the vesicle. Our findings are of interest for designing future experiments or microfluidic

devices: the possibility to trigger the tumbling-to-tank-treading transition either by geometry or

viscosity contrast alone opens attractive possibilities for microrheological measurements as well as the

detection and diagnosis of diseased red blood cells in confined flow.
I. Introduction

The dynamics of deformable micro-particles (e.g., droplets,

polymeric capsules, phospholipid vesicles, or blood cells) under

flow is a fascinating fundamental problem with increasing rele-

vance for technological applications, for example, in food pro-

cessing, drug delivery, or designing lab-on-chip devices. The

present paper contributes to the study of vesicle and red blood

cell (RBC) dynamics, an attractive subject that has led to

numerous publications in the last two decades (see ref. 1 and the

references therein). A key aim of these works is to derive

constitutive physical laws to bridge the details of the dynamics of

each single particle (at the microscale) to the global behavior of a

suspension (at the macroscale). This bottom-up approach is

generally used to study the dynamics of so-called complex fluids

(e.g., blood) since the classical way of treating these as a single

continuum medium fails to capture the relevant physics. It is

required especially when the fluid is confined to length scales

comparable to the particle size, for instance, blood flow in the

microcirculatory system. The same scenario is faced in lab-on-

chip devices where the composed fluid (carrying fluid with sus-

pended particles) flows in micro-channels with cross-sections of

similar size as that of the transported particles. Moreover, it was

found that confinement – due to the presence of the walls – alters
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the dynamics (see ref. 2 and 3 for polymers) and stability of

deformable micro-particles (see ref. 4–6 for droplets).

The present study is devoted to investigate the interplay

between the confinement and the viscosity contrast (ratio

between internal and external fluid viscosities) on the dynamics

of viscous vesicles and RBCs. This study is relevant to elucidate,

for example, the challenge of the reproducibility and the accu-

racy of blood viscosity measurements that results from the

interplay between rheometer wall effects and the dynamical state

of each individual RBC. On one hand, confinement can lead to

an overestimation of the measured effective viscosity of blood as

mentioned in ref. 7. On the other hand, the transition of the

dynamical states of vesicles and RBCs induced by varying the

viscosity contrast was found to minimize the effective viscosity.8

However, to our knowledge, a systematic study that takes into

account both effects (confinement and viscosity contrast) is

lacking. It is known9–12 that an unconfined vesicle or RBC sub-

jected to shear flow undergoes either a steady liquid-like motion

called tank-treading (the vesicle main axis assumes a steady

inclination angle with the flow direction while the membrane

undergoes a tank-treading-like motion) or an unsteady solid-like

motion called tumbling (the vesicle flips as a solid particle13).

These dynamical states depend on three dimensionless control

parameters: (i) the swelling degree D, (ii) the viscosity contrast L,

and (iii) the capillary number Ca (ratio between viscous and

membrane bending forces).14–17 The transition between the two

dynamical states can be induced by varying these three control

parameters. In this paper, we show that there is an additional

control parameter: the degree of confinement c.
This journal is ª The Royal Society of Chemistry 2012
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In the reported simulations, we place a vesicle in a linear shear

flow. This way, one avoids the interplay between the vesicle

deformability and nonlinear velocity profiles which would lead to

complex dynamics, even in the absence of a viscosity contrast.18,19

We keep the Reynolds number, the capillary number, the shear

rate, and the swelling degree unchanged. Consequently, we

examine how the system reacts to the variation of only two

control parameters: the viscosity of the enclosed fluid (an

intrinsic vesicle property) and the degree of confinement (ratio of

the vesicle size to the height of the channel). The effect of

confinement on the transition of vesicle dynamics was briefly

studied by Beaucourt et al.10 using phase-field simulations: for a

given c, the transition was induced by varying L. In contrast, we

induce the transition by varying only the confinement, keeping

all fluid and vesicle properties (especially L) unchanged. This

provides the interesting possibility to trigger the transition in

experiments by merely adjusting the wall distance without

replacing the vesicle or the suspending fluid. Additionally, we

report how the physical quantities characterizing each dynamical

state vary with confinement.
II. Model and method

Vesicles are closed membranes made of phospholipid molecules,

e.g., dioleoylphosphatidylcholine (DOPC). They constitute a

good biomimetic model for living cells, for example, to study

blood cell dynamics. They are also used for micro-encapsulation

of active materials in drug delivery. At room temperature

(�25 �C), most of the phospholipid membranes, in particular

biological membranes, are in the liquid state. Their thickness

(�5 nm) is negligibly small compared to the vesicle size (typically

�10 mm for giant unilamellar vesicles). Therefore, vesicle

membranes are considered as two-dimensional incompressible

Newtonian liquids. As a consequence, the membrane area cannot

undergo extension or compression since such deformation modes

would cost a lot of energy. This implies local and global

conservation of the vesicle area, as is the case for RBCs.20

Mathematically and numerically, this constraint can be achieved

by using a local Lagrangian multiplier s that plays the role of an

effective surface tension. The associated tension energy is given

by ES ¼ Ð
vU
sðsÞds, where the integration is performed over the

membrane surface vU. The mechanical deformation mode that

costs less energy is bending, EB ¼ kB

2

ð
vU

c2ðsÞds, where kB is the

bending rigidity and c(s) the local membrane curvature. When

the membrane is bent due to hydrodynamic stresses, and there-

fore brought out of its equilibrium configuration, it exerts a

reaction force back on its surrounding fluid. The force is derived

by taking the functional derivative F ¼ d(EB + ES)/dr. In two

dimensions (2D), this results in21

F ¼
"
kB

 
v2c

vs2
þ c3

2

!
� cs

#
nþ vs

vs
t; (1)

where n and t are, respectively, the unit normal and tangent

vectors. Our present model can be applied to vesicles as well as

RBCs. In 2D, both particles exhibit similar dynamics.18,19,21

However, in three-dimensional models, we need to account for

the RBCs’ shear elasticity. This leads, in some situations, to
This journal is ª The Royal Society of Chemistry 2012
dynamics not observed for vesicles (with zero shear elasticity),

for example, the swinging motion.7

The vesicle membrane is a free-moving boundary whose shape

and position are not known a priori. Its dynamics results from its

interaction with the flow of the surrounding fluid. In the present

work, the membrane dynamics is computed using a front-

tracking method in 2D. The membrane is represented by a

moving Lagrangian mesh (a contour in 2D) and the fluid flow is

computed on a fixed Eulerian lattice. Instead of solving the

Navier–Stokes equations inside and outside the vesicle directly,

we use the lattice-Boltzmann method (LBM). The LBM is

commonly employed to study the dynamics and rheology of

complex fluids (see, e.g., ref. 22–24). Both the position and

velocity spaces are discretized; here we use nine discrete velocity

directions in 2D. The main quantity in the LBM is the density

distribution fi(r,t) giving the probability to find an elementary

portion of the fluid at position r with velocity in the direction ei.

The time evolution of fi is governed by the lattice-Boltzmann

equation with the Bhatnagar–Gross–Krook (BGK) collision

operator25

fiðrþ eiDt; tþ DtÞ ¼ fiðr; tÞ � Dt

s

�
fiðr; tÞ � f

eq
i ðr; tÞ�; (2)

where Dt is the time step. s is the relaxation time related to the

dynamic viscosity h via the relation h ¼ rcs
2(s � 1/2)Dx2/Dt,

where r ¼P8
i¼0 fi is the fluid mass density, cs is the speed of

sound and Dx the grid spacing. feqi is the equilibrium distribution.

The local fluid velocity is given by u ¼ 1

r

X8

i¼0
fiei. Geometrical

quantities of the membrane (e.g. the local curvature c) required

to evaluate the force given by eqn (1) are computed using the

finite difference method (FDM). The membrane force F acting

on the fluid is included in the model by adding the term (F$ei) to

the right-hand-side of eqn (2). The two-way coupling between the

fluid flow and the membrane dynamics is accomplished using

Peskin’s immersed boundary method (IBM).26 The physical

quantities computed in each mesh are matched by interpolation.

More details about the numerical methods can be found in ref.

21. In the present work, in contrast to our previous article,21 we

consider that the viscosities of the internal fluid hint and of the

external fluid hext are different (L ¼ hint/hext s 1). We locate the

fluid nodes relative to the vesicle (inside or outside) by the even–

odd rule.27 Then the LBM relaxation time is set depending on the

current fluid node location. Unlike in phase-field or level-set

methods, the even–odd algorithm does not rely on diffuse scalar

fields for the viscosity, and no additional field equation has to be

solved. To our knowledge, this is the first time the dynamics of

viscous vesicles is studied using a combination of the lattice-

Boltzmann and immersed boundary methods.

In the following, a single neutrally buoyant vesicle is posi-

tioned at mid-distance between two parallel plates. A linear shear

flow with the desired shear rate g is generated by moving the two

plates in opposite directions. All the results shown below have

been obtained for a Reynolds number of Re ¼ rgR0
2/hext ¼ 0.05

(negligible inertia) and a capillary number of Ca¼ hextgR0
3/kB ¼

0.5 (low deformation regime), where R0 is the effective vesicle

radius. In 2D, R0 ¼ P/2p, where P is the vesicle perimeter. In the

low deformation regime, the vesicle shape is always close to its

equilibrium configuration and the deformation does not alter the
Soft Matter, 2012, 8, 9246–9252 | 9247



Fig. 2 The inclination angle J (in radians) versus the viscosity contrast

L of tank-treading vesicles at three different degrees of confinement (c ¼
0.10, 0.26 and 0.50). The transition threshold (whereJ vanishes) shifts to

higher values when increasing the confinement.
dynamics. The swelling degree D¼ 4pA/P2 (A is the vesicle area)

is chosen as D ¼ 0.8 in order to compare with the data in ref. 10,

which to the best of our knowledge is the only available paper

where the dynamics of a confined viscous vesicle under shear flow

is studied. The external viscosity hext is also fixed in all simula-

tions. In this paper, we vary only the two key controlling

parameters: (i) the viscosity contrast L and (ii) the degree of

confinement c. The viscosity contrast L is set to values between

0.5 and 30 by varying only the internal viscosity hint. For healthy

RBCs under physiological conditions, 7 # L # 13. The

confinement is defined as c¼ R0/W, whereW is the channel half-

height.

III. Results and discussion

First, we investigate the effect of the viscosity contrast L. We

compute the physical quantities characterizing each vesicle

dynamical state when varying L, while keeping the confinement

fixed at c ¼ 0.26. The tank-treading motion is characterized by

the steady inclination angle J and the membrane tank-treading

velocity V, while the tumbling motion is characterized by the

tumbling frequency U. Fig. 1 shows the variation of these

quantities when increasing L from 1 to 16. For convenience,J is

normalized by p/6, V and U are normalized, respectively, by the

rotational velocity (gR0/2) and frequency (g/4p) of a rigid

cylinder rotating in unbounded shear flow.28 At lower L, the

vesicle performs the tank-treading motion (left panel). By

increasing L, both J and V decrease. J decreases until it

vanishes at a critical value LC (here, LC ¼ 8.25) above which

tumbling takes over (right panel). In the tumbling regime, U

increases with L until saturation at larger L (limit of a rigid

particle). Even at this finite degree of confinement (c ¼ 0.26), we

are able to reproduce qualitatively the same dynamical behavior

known for unconfined viscous vesicles (c ¼ 0), reported, for

example, in ref. 9–12.

Next, we examine the effect of confinement. We computeJ of

tank-treading vesicles as a function of L and at three different

values of c (0.10, 0.26 and 0.50). Fig. 2 shows the decreasing
Fig. 1 The transition of the vesicle dynamical state induced by

increasing the viscosity contrast L at fixed confinement c ¼ 0.26. Left

panel: both the inclination angle J and the tank-treading velocity V

decrease with L. Right panel: the tumbling frequency U increases with L.

Qualitatively, the same dynamical behavior is observed for unconfined

viscous vesicles (c ¼ 0).9–12 All plotted quantities are normalized (see text

for details).

9248 | Soft Matter, 2012, 8, 9246–9252
trend ofJ with increasing L for all three degrees of confinement,

as seen in Fig. 1 for c ¼ 0.26. However, we notice that for both

c ¼ 0.10 and 0.26, the inclination angle vanishes at two different

values of L. By increasing c from 0.10 to 0.26, the threshold of

the tank-treading to tumbling transition shifts from 6.05 to 8.25.

For the larger value c ¼ 0.5, J decreases as well but without

reaching zero, therefore, the transition to tumbling motion is not

observed. From Fig. 2, we learn that confinement increases LC

and even eliminates tumbling at higher confinement (for the

parameter range explored in the present study).

In Fig. 3, the critical viscosity contrastLC is plotted against the

confinement c. This gives the c–L phase-diagram of the

dynamical states of a confined viscous vesicle subjected to shear

flow. It can be seen that the transition threshold LC is pushed up

by increasing the confinement. The same trend has been observed

by Beaucourt et al.10 for 0.1 # c # 0.3. A comparison of the

present data obtained, by IBM/LBM (square symbols in Fig. 3),

with those reported in ref. 10 by means of the phase-field method

(circle symbols in Fig. 3) reveals a good qualitative and
Fig. 3 The c–L phase-diagram of the dynamical states (tank-treading or

tumbling) of confined viscous vesicles subjected to shear flow. The

confinement shifts or even inhibits the transition to tumbling. The range of

7# L# 13 corresponds to healthy RBCs. Typical confinement in arteries

and arterioles are also shown. Circle symbols are data from ref. 10.

This journal is ª The Royal Society of Chemistry 2012



quantitative agreement. We consider a more extended interval of

confinement 0.05 # c # 1.25 as compared to 0.1 # c # 0.3

reported in ref. 10. Fig. 3 leads to the interesting finding that the

transition between the tank-treading and the tumbling motion

can also be induced by varying the confinement c alone, without

changing the viscosity contrast L. For example, by taking a

tumbling vesicle with L > LC at a lower confinement, we can

force it to tank-tread by increasing the confinement above a

certain threshold cC. We expect the same confinement-induced

transition (besides the shear-induced transition) to happen for

RBCs, for which 7 # L # 13, during their displacement from

arteries (low confinement: 2W > 100 mm, c < 0.1) to arterioles

(high confinement: 10 mm < 2W < 100 mm, 0.1 < c < 1).

The transition due to the confinement occurs via a saddle–node

bifurcation as shown in Fig. 4 for a vesicle with L ¼ 8. The angle

J is well fitted with the square root law� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� cC

p
in the vicinity

of the bifurcation point cC. At lower confinement (left panel), the

vesicle tumbles. By increasing c, the vesicle motion starts to be

affected by the presence of the walls. The tumbling frequency U

(triangle symbols with the dotted line) decreases until it vanishes

at the transition point (cC ¼ 0.249). Beyond this threshold and at

higher confinement (right panel), the tank-treading motion takes

over. It has to be stressed that this was not expected to happen at

c ¼ 0.249. At this degree of confinement, the gap between the

membrane and the wall is three times the vesicle size R0. This

available free space would be sufficient for a full tumbling period

of the vesicle. A physical contact between the vesicle and the

walls is possible only for c $ c*, where c* ¼ 0.75 is the

confinement for which the vesicle long semi-axis and the channel

half-heightW are equal. Thus, we conclude that the tumbling-to-

tank-treading transition induced by confinement is not entirely

due to geometrical constraints. Fig. 4 (right panel) reveals

another astonishing observation. The inclination angle J was

found to increase with confinement. This result is in contradic-

tion with our previous work for non-viscous vesicles (L ¼ 1)

where the confinement is found to reduce the angle rather than
Fig. 4 The transition from tumbling to tank-treading of a viscous vesicle

(L ¼ 8) induced by confinement c (in contrast to Fig. 1 where the tran-

sition is induced by varying L). Left panel: the tumbling frequency U

decreases down to zero with confinement. Right panel: the angle J

increases while the tank-treading velocity V decreases with confinement.

The dashed-dotted line is a fit of the angle with a square root law

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� cC

p
. All plotted quantities are normalized (see text for details).

This journal is ª The Royal Society of Chemistry 2012
increase it.21 Furthermore, in Fig. 4, the tank-treading velocity V

evolves in the opposite way. It decreases with confinement.

However, this trend is consistent with the results in ref. 21. The

intriguing behavior in Fig. 4 is the opposite variation inJ and V

with confinement c, unlike in Fig. 1 where both quantities

decrease with the viscosity contrast L. In ref. 21, the decrease of

the inclination angle with confinement was explained to be

caused by a torque exerted by the walls upon the vesicle. Obvi-

ously, this explanation does not hold for viscous vesicles (L > 1).

The arising question is then: how does the torque incline

the vesicle with the flow for L ¼ 1 while it does the opposite for

L > 1? In both situations, the walls, the external fluids, and the

membrane properties are identical. The only difference is the

internal viscosity hint and the resulting viscosity contrast L.

A step forward to answer the above question is to compare the

variation of J with c of tank-treading vesicles having different

viscosity contrasts (L ¼ 0.5, 1, 4 and 8). We notice that the

vesicles behave differently depending on whether L# 1 or L > 1,

see Fig. 5. For L# 1, the angle decreases monotonically with the

confinement c, it decreases rapidly when c > 0.5. For L > 1, the

angle first increases up to a maximum and then decreases

when the confinement becomes larger. For both cases (L# 1 and

L > 1), the inclination angles converge to the same value (J ¼
0.23 radian) at higher confinement (c > 1). We observe the same

non-monotonic variation of the angle with the confinement for

other values of L > 1 (not reported here). We are not aware of

any work reporting this observation for vesicles or RBCs.

However, for confined viscous droplets, the increase of J with c

has been observed by Janssen et al. numerically5 and experi-

mentally,6 but no physical explanation for this behavior was

provided. The authors rather used the angle variation with

confinement to explain the droplet stability against break-up.

Unlike viscous vesicles and RBCs, droplets are known to

perform only the tank-treading motion, and therefore no

dynamical state transition is observed for them. We explain the

observed increase of J with c, for viscous vesicles, by analyzing

the pressure field. Fig. 6 shows the variation in the pressure

around a sheared viscous vesicle (L ¼ 8) at different degrees of

confinement (c ¼ 0.1, 0.5 and 1.0). The pressure values reported
Fig. 5 The variation of the inclination angleJ (in radians) as a function

of confinement c of tank-treading vesicles having different viscosity

contrasts (L ¼ 0.5, 1, 4 and 8). For L > 1, J varies non-monotonically

with c. At higher confinement, all curves converge to the same valueJ ¼
0.23 (radian). c* ¼ 0.75 is the degree of confinement when the channel

half-height has the same size as the vesicle long axis.

Soft Matter, 2012, 8, 9246–9252 | 9249



Fig. 6 The pressure variation around the same viscous vesicle (L ¼ 8)

subjected to shear flow at three different degrees of confinement: (a) lower

c ¼ 0.1, (b) moderate c ¼ 0.5 and (c) higher c ¼ 1.0. The red-colored

regions correspond to higher pressure, while the blue-colored ones

correspond to lower pressure. In (a), the vesicle tumbles. The dashed lines

are vesicle snapshots taken at different times. In (b) and (c), the vesicle

9250 | Soft Matter, 2012, 8, 9246–9252
in Fig. 6 are the relative deviations from the pressure of the

external fluid in the absence of the vesicle. Regions with higher

pressure are shown in red and those with lower pressure in blue.

At lower confinement (c ¼ 0.1, Fig. 6a), the rotational compo-

nent of the imposed shear flow induces a viscous torque in the

clockwise direction responsible for the tumbling motion of the

vesicle. Dashed closed lines in Fig. 6a represent the vesicle shapes

(taken at equal time intervals) to show the tumbling motion. The

vesicle rotates slowly and spends much time in the region of�p/4

< J < p/4. By increasing the confinement to a moderate value

(c ¼ 0.5, Fig. 6b), the pressure variations increase. Due to the

pressure distribution around the vesicle (decreased pressure in

the top right and bottom left quadrants and increased pressure in

the top left and bottom right quadrants), a counterclockwise

torque is induced. This pressure-induced torque competes with

the torque due to the viscous stress mentioned above. At this

confinement (c ¼ 0.5), the sum of the two torques vanishes. This

results in a steady inclination of the vesicle, instead of tumbling

and it explains the occurrence of the confinement-induced tran-

sition as observed in Fig. 2–4. Increasing the confinement further

amplifies the pressure-induced torque and consequently increases

the inclination angle. This explains the increase of the angle with

confinement observed in Fig. 4 and 5. At larger degrees of

confinement (c ¼ 1.0, Fig. 6c) the vesicle approaches the wall. In

this situation, the gap between the membrane and the wall

becomes thin. However, the vesicle never touches the walls due to

lubrication forces that induce a clockwise torque pushing the

vesicle away from the walls. This coincides with observing a

negative local wall shear stress (like in ref. 21). At the largest

confinement studied (c ¼ 1.25), the steady angle is J ¼ 0.23

(radian), regardless of the viscosity contrast (see Fig. 5). At this

degree of confinement, the angle is mainly governed by the

geometry (channel height and vesicle shape), and the other

parameters, especially the viscosity contrast, do not play a

significant role. This is caused by the balance of viscous-, pres-

sure- and lubrication-induced torques.

After explaining the mechanism behind the behavior of the

vesicle angle with confinement, we now analyze the effect of

confinement on the way the vesicle tumbles. In addition to the

tumbling frequency (shown in Fig. 4) we analyze the phase

portrait, where the normalized angular velocity dJ/gdt is plotted

as a function of the instantaneous inclination angle J(t), see

Fig. 7. The angular velocity is negative since the vesicle performs a

clockwise tumblingmotion. The value dJ/dt¼�g/2 corresponds

to the angular velocity of a rigid cylinder rotating in unbounded

shear flow.28 It has the same value independent ofJ. For deflated

vesicles (here D ¼ 0.8), dJ/dt > �g/2 when the angle is

between�p/4 and p/4, thus the vesicle is slower and spends more

time in that angular region. For the remaining range of angles,

dJ/dt<�g/2, the vesicle rotates faster. The solid line inFig. 7a is a

fit of the numerical data-set (square symbols) with the function

1

g

dJ

dt
¼ Aþ B cosð2JÞ (3)

introduced by Jeffery to describe the rotation of rigid ellipsoidal

particles in an unbounded shear flow.13Here,A¼�1/2 and B is a
tank-treads. The circle (dotted line) shows the required space for

tumbling.

This journal is ª The Royal Society of Chemistry 2012



Fig. 7 The angular velocity dJ/(gdt) versus the instantaneous inclina-

tion angle J during the tumbling motion of a viscous vesicle (L ¼ 8). (a)

The data-set for c ¼ 0.1 (square symbols) is fitted perfectly with the

function A + Bcos(2J) (solid line), where A ¼ 1/2 and B ¼ 0.47. (b) The

angular velocity versus the angle for different degrees of confinement (c¼
0.10, 0.15 and 0.23). At higher c, the angular velocity approaches zero.

Fig. 8 Variation of the Keller and Skalak parameter �A/B with

confinement c for different viscosity contrasts (L¼ 7, 8 and 12). For each

L, the transition from tumbling to tank-treading occurs exactly

when�A/B¼ 1. The corresponding critical value of c, for each L, agrees

with the one reported in Fig. 3.
function of the particle aspect ratio (ratio between the long and

the short axes in the shearing plane). Eqn (3) has since been

extended by Keller and Skalak9 to take into account the motion

of fluid-filled particles having a liquid membrane (such as RBCs

or vesicles). In this case, B depends on the viscosity contrast L.

The theory of Keller and Skalak (KS) predicts the dynamics

of a vesicle in unbounded shear flow, depending on the

value of �A/B. For �A/B > 1, the vesicle tumbles, whereas for

0 < �A/B < 1, the vesicle tank-treads. It was found experimen-

tally that, for larger deformation (Ca[1), the terms A and B

deviate from their respective expressions given by the theory of

KS.11 In the present paper, Ca ¼ 0.5 is sufficiently small.

Therefore, A is considered to be a constant and equal to �1/2.

Only B is assumed to be a function of L and c, and used as a

fitting parameter. Obviously, eqn (3) accurately describes the

evolution of the inclination angle for c ¼ 0.1, see Fig. 7a. The

angular velocity dJ/(gdt) is plotted as a function of J for three

values of confinement (c ¼ 0.10, 0.15 and 0.23) in Fig. 7b. For

convenience, only the region [�p/8,p/8] � [�1/4,0] is shown. By

increasing c, the maximum of the angular velocity approaches

zero. This means that the motion of the vesicle slows down in the

region [ �p/4,p/4] where it spends most of the time. As a result,

the tumbling is delayed. Presumably, a further increase of c (c >

0.23) would lead to a positive value of dJ/dt and therefore to an

unstable counterclockwise rotation. Instead, we observe the

transition to the tank-treading motion.

By fitting the data in Fig. 7b with eqn (3), we find that B is an

increasing function of the confinement c. In Fig. 8, we

report �A/B versus c, for L ¼ 7, 8 and 12. Square symbols

correspond to the values obtained when the vesicle tumbles

(using a fit as described above). For these points, we observe�A/

B > 1. The value of �A/B decreases until reaching unity at a

critical confinement cC where the transition from tumbling to

tank-treading occurs. The corresponding values of cC for each L

are in good agreement with the phase-diagram in Fig. 3. The

triangles in Fig. 8 denote the values of �A/B computed for tank-

treading vesicles via the equation �A/B ¼ cos(2J) which is eqn

(3) for a steady inclination angle (dJ/dt ¼ 0). For these points,

0 < �A/B < 1 holds. As mentioned above, in the KS theory, it is
This journal is ª The Royal Society of Chemistry 2012
sufficient to study the value of �A/B in order to predict the

vesicle dynamical state in unbounded shear flow. Interestingly,

this also applies here to catch the transition, although the system

is confined, while the KS theory does not include confinement

effects. We emphasize again that here the transition is induced by

varying c alone. The viscosity contrast, the swelling degree, and

the capillary number are all kept constant. Thus, the transition

from tumbling to tank-treading due to the confinement can also

be explained based on the theory of KS. The transition takes

place when�A/B¼ 1. Above, we used values of B obtained from

our simulations. Even though further theoretical study is needed

to derive a closed analytical expression for the c-dependence of

B, we show that B is an increasing function of c.

IV. Conclusions

Using computer simulations we show that by only squeezing a

viscous vesicle one can induce the dynamical transition from a

solid-like motion (tumbling) to a liquid-like motion (tank-

treading). Moreover, we find that confinement slows down the

tumbling motion and increases the inclination angle of tank-

treading vesicles with L > 1. The confinement-induced transition

and associated vesicle dynamical behavior result from the

competition between viscous- and pressure-induced torques

exerted upon the vesicle. At larger degrees of confinement, the

lubrication-induced torque becomes dominant and pushes the

vesicle to align with the walls. The dynamics of vesicles are well

described in the limit of the low deformation regime by the

theory of Keller and Skalak.9 However, it is limited to

unbounded shear flow. Here, we predict that the term B in this

theory would be a function of confinement. The tumbling-to-

tank-treading transition is also observed for RBCs. It is usually

attributed to the increase in the shear rate g, for instance, during

the displacement of RBCs from large arteries (where g is lower)

to the branches (where g is higher). A RBC also stops tumbling

when it is squeezed in a capillary, because of the lack of available

space. It is necessary for RBCs to switch to tank-treading mode

in order to pass through narrower capillaries. Based on our

findings, a RBC may be expected to undergo this transition even

at constant shear rate and at lower confinement (c < 0.5),

compared to c > 1 encountered in capillaries. The effect of
Soft Matter, 2012, 8, 9246–9252 | 9251



confinement can be seen as an extra contribution (besides the

change in the shear rate) to the transition from tumbling to tank-

treading of RBCs. This transition is found to be a contributing

factor for shear thinning of blood.7 Therefore, since we could

induce this dynamical transition by confinement we expect that

this will also lead to shear thinning for a suspension of viscous

vesicles or RBCs. Under these circumstances, the walls play the

role of inducing the transition, in contrast to the Fahraeus–

Lindqvist effect where the walls induce cross-stream migration of

RBCs. We expect that our study will stimulate further studies,

similar to ref. 29, for confined suspensions of deformable micro-

particles in order to gain more insight into the link between

confinement effects, dynamical transition and the effective

viscosity.
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