897 research outputs found
Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries
A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian
quantization of general massive gauge theories. The superalgebra os0(1,2) is
considered as subalgebra of sl(1,2); the latter may be considered as the
algebra of generators of the conformal group in a superspace with two
anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper
solutions of the quantum master equations in the osp(1,2)-covariant formalism
are realized in that superspace as invariance under translations combined with
mass-dependent special conformal transformations. The Sp(2) symmetry - in
particular the ghost number conservation - and the "new ghost number"
conservation are realized as invariance under symplectic rotations and
dilatations, respectively. The transformations of the gauge fields - and of the
full set of necessarily required (anti)ghost and auxiliary fields - under the
superalgebra sl(1,2) are determined both for irreducible and first-stage
reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference
Recommended from our members
Integrating short-term demand response into long-term investment planning
Planning models have been used for many years to optimize generation investments in electric power systems. More recently, these models have been extended in order to treat demand-side management on an equal footing. This paper stresses the importance of integrating short-term demand response to time-varying prices into those investment models. Three different methodologies are suggested to integrate short-term responsiveness into a long-term model assuming that consumer response can be modelled using price-elastic demand and that generators behave competitively. First, numerical results show that considering operational constraints in an investment model results in less inflexible base load capacity and more mid-range capacity that has higher ramp rates. Then, own-price and cross-price elasticities are included in order to incorporate consumers’ willingness to adjust the demand profile in response to price changes. Whereas own-price elasticities account for immediate response to price signals, cross-price elasticities account for shifting loads to other periods. As energy efficiency programs sponsored by governments or utilities also influence the load profile, the interaction of energy efficiency expenditures and demand response is also modelled. In particular, reduced responsiveness to prices can be a side effect when consumers have become more energy efficient. Comparison of model results for a single year optimization with and without demand response shows the peak reduction and valley filling effects of response to real-time prices for an illustrative example with a large amount of wind power injections. Additionally, increasing demand elasticity increases the optimal amount of installed wind power capacity. This suggests that demand-side management can result in environmental benefits not only through reducing energy use, but also by facilitating integration of renewable energy
Nonsense mutations in alpha-II spectrin in three families with juvenile onset hereditary motor neuropathy
Distal hereditary motor neuropathies are a rare subgroup of inherited peripheral neuropathies hallmarked by a length-dependent axonal degeneration of lower motor neurons without significant involvement of sensory neurons. We identified patients with heterozygous nonsense mutations in the alpha II-spectrin gene, SPTAN1, in three separate dominant hereditary motor neuropathy families via next-generation sequencing. Variable penetrance was noted for these mutations in two of three families, and phenotype severity differs greatly between patients. The mutant mRNA containing nonsense mutations is broken down by nonsense-mediated decay and leads to reduced protein levels in patient cells. Previously, dominant-negative alpha II-spectrin gene mutations were described as causal in a spectrum of epilepsy phenotypes
Regularisation, the BV method, and the antibracket cohomology
We review the Lagrangian Batalin--Vilkovisky method for gauge theories. This
includes gauge fixing, quantisation and regularisation. We emphasize the role
of cohomology of the antibracket operation. Our main example is gravity,
for which we also discuss the solutions for the cohomology in the space of
local integrals. This leads to the most general form for the action, for
anomalies and for background charges.Comment: 12 pages, LaTeX, Preprint-KUL-TF-94/2
Separability of Black Holes in String Theory
We analyze the origin of separability for rotating black holes in string
theory, considering both massless and massive geodesic equations as well as the
corresponding wave equations. We construct a conformal Killing-Stackel tensor
for a general class of black holes with four independent charges, then identify
two-charge configurations where enhancement to an exact Killing-Stackel tensor
is possible. We show that further enhancement to a conserved Killing-Yano
tensor is possible only for the special case of Kerr-Newman black holes. We
construct natural null congruences for all these black holes and use the
results to show that only the Kerr-Newman black holes are algebraically special
in the sense of Petrov. Modifying the asymptotic behavior by the subtraction
procedure that induces an exact SL(2)^2 also preserves only the conformal
Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black
hole possesses a conformal Killing-Stackel tensor but has no further
enhancements.Comment: 27 page
Complicated spastic paraplegia in patients with AP5Z1 mutations (SPG48)
Objective: Biallelic mutations in the AP5Z1 gene encoding the AP-5 ζ subunit have been described in a small number of patients with hereditary spastic paraplegia (HSP) (SPG48); we sought to define genotype–phenotype correlations in patients with homozygous or compound heterozygous sequence variants predicted to be deleterious.
Methods: We performed clinical, radiologic, and pathologic studies in 6 patients with biallelic mutations in AP5Z1.
Results: In 4 of the 6 patients, there was complete loss of AP-5 ζ protein. Clinical features encompassed not only prominent spastic paraparesis but also sensory and motor neuropathy, ataxia, dystonia, myoclonus, and parkinsonism. Skin fibroblasts from affected patients tested positive for periodic acid Schiff and autofluorescent storage material, while electron microscopic analysis demonstrated lamellar storage material consistent with abnormal storage of lysosomal material.
Conclusions: Our findings expand the spectrum of AP5Z1-associated neurodegenerative disorders and point to clinical and pathophysiologic overlap between autosomal recessive forms of HSP and lysosomal storage disorders
FAHN/SPG35 : a narrow phenotypic spectrum across disease classifications
The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers
New SMARCA2 mutation in a patient with Nicolaides–Baraitser syndrome and myoclonic astatic epilepsy
We report a de novo SMARCA2 missense mutation discovered on exome sequencing in a patient with myoclonic astatic epilepsy, leading to reassessment and identification of Nicolaides–Baraitser syndrome. This de novo SMARCA2 missense mutation c.3721C>G, p.Gln1241Glu is the only reported mutation on exon 26 outside the ATPase domain of SMARCA2 to be associated with Nicolaides–Baraitser syndrome and adds to chromatin remodeling as a pathway for epileptogenesis. © 2016 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals, Inc
Visual associations to retrieve episodic memory across healthy elderly, mild cognitive impairment, and patients with Alzheimer's disease
- …
