10,615 research outputs found
The extent to which selected elementary, junior, and senior high school textbooks confirm certain misconceptions in United States history
Thesis (Ed.M.)--Boston Universit
Concentric Black Rings
We present new supersymmetric solutions of five-dimensional minimal
supergravity that describe concentric black rings with an optional black hole
at the common centre. Configurations of two black rings are found which have
the same conserved charges as a single rotating black hole; these black rings
can have a total horizon area less than, equal to, or greater than the black
hole with the same charges. A numerical investigation of these particular black
ring solutions suggests that they do not have closed timelike curves.Comment: 7 pages, minor alterations, typos corrected. Version to be published
in PR
The extent to which selected elementary, junior, and senior high school textbooks confirm certain misconceptions in United States history
Thesis (Ed.M.)--Boston Universit
Mixing fuel particles for space combustion research using acoustics
Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity
A long-term in vitro silicon-based microelectrode-neuron connection
A novel method for long-term recording and simulation applicable to cultured neurons has been developed. Silicon-based microelectrodes have been fabricated using integrated-circuit technology and micromachining. The chronic connection is made by positioning the tip of the `diving-board electrode' into contact with the top of the cell body. The electrode support structure is then glued to the bottom of the culture dish. Two-way electrical connections to Helisoma B19 neurons have been maintained for up to four days. This capability makes it possible to conduct experiments that are not practical using conventional techniques
General Concentric Black Rings
Supersymmetric black ring solutions of five dimensional supergravity coupled
to an arbitrary number of vector multiplets are constructed. The solutions are
asymptotically flat and describe configurations of concentric black rings which
have regular horizons with topology and no closed time-like
curves at the horizons.Comment: 8 pages, minor alterations, typos corrected. Version to be published
in PR
The dynamical structure of the MEO region: long-term stability, chaos, and transport
It has long been suspected that the Global Navigation Satellite Systems exist
in a background of complex resonances and chaotic motion; yet, the precise
dynamical character of these phenomena remains elusive. Recent studies have
shown that the occurrence and nature of the resonances driving these dynamics
depend chiefly on the frequencies of nodal and apsidal precession and the rate
of regression of the Moon's nodes. Woven throughout the inclination and
eccentricity phase space is an exceedingly complicated web-like structure of
lunisolar secular resonances, which become particularly dense near the
inclinations of the navigation satellite orbits. A clear picture of the
physical significance of these resonances is of considerable practical interest
for the design of disposal strategies for the four constellations. Here we
present analytical and semi-analytical models that accurately reflect the true
nature of the resonant interactions, and trace the topological organization of
the manifolds on which the chaotic motions take place. We present an atlas of
FLI stability maps, showing the extent of the chaotic regions of the phase
space, computed through a hierarchy of more realistic, and more complicated,
models, and compare the chaotic zones in these charts with the analytical
estimation of the width of the chaotic layers from the heuristic Chirikov
resonance-overlap criterion. As the semi-major axis of the satellite is
receding, we observe a transition from stable Nekhoroshev-like structures at
three Earth radii, where regular orbits dominate, to a Chirikov regime where
resonances overlap at five Earth radii. From a numerical estimation of the
Lyapunov times, we find that many of the inclined, nearly circular orbits of
the navigation satellites are strongly chaotic and that their dynamics are
unpredictable on decadal timescales.Comment: Submitted to Celestial Mechanics and Dynamical Astronomy. Comments
are greatly appreciated. 28 pages, 15 figure
Accurate Inversion of High-Resolution Snow Penetrometer Signals for Microstructural and Micromechanical Properties
Measurements of snow using a high-resolution micropenetrometer can be used to discriminate between different snow types; in lower-density snow the signal is sensitive to microstructure, and micromechanical properties can be estimated. Although a physics-based snow penetration theory was first developed almost a decade ago, since that time the majority of studies using snow micropenetrometers have focused on using direct hardness measurements in statistical relationships. We use Monte-Carlo simulations to rigorously test the existing physics-based snow micropenetration theories over a wide range of parameters. These tests revealed four major sources of error in the inversion, which are corrected in this analysis. It is shown that this improved inversion algorithm can recover micromechanical parameters in synthetic data with much greater accuracy over the entire range of micromechanical properties observed in natural snow. Detailed examples of the inversion results are shown for eight different snow types, collected in both Alaskan and alpine snowpacks. The resulting micromechanical properties are distinctly different, indicating that a snow characterization from snow micropenetrometer estimates of micromechanical properties is likely possible. Estimates of the microscale elastic modulus, microscale strength, and structural element length make sense physically when compared to the qualitative descriptions of the different snow types. Microscale strength estimates are used to estimate macroscale strength values, and results from 33 different snow samples, covering a wide range of densities and snow types, are consistent with previously reported values from macroscale tests
- …
