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[1] Measurements of snow using a high-resolution micropenetrometer can be used to
discriminate between different snow types; in lower-density snow the signal is sensitive to
microstructure, and micromechanical properties can be estimated. Although a
physics-based snow penetration theory was first developed almost a decade ago, since that
time the majority of studies using snow micropenetrometers have focused on using direct
hardness measurements in statistical relationships. We use Monte-Carlo simulations to
rigorously test the existing physics-based snow micropenetration theories over a wide
range of parameters. These tests revealed four major sources of error in the inversion,
which are corrected in this analysis. It is shown that this improved inversion algorithm can
recover micromechanical parameters in synthetic data with much greater accuracy over
the entire range of micromechanical properties observed in natural snow. Detailed
examples of the inversion results are shown for eight different snow types, collected in
both Alaskan and alpine snowpacks. The resulting micromechanical properties are
distinctly different, indicating that a snow characterization from snow micropenetrometer
estimates of micromechanical properties is likely possible. Estimates of the microscale
elastic modulus, microscale strength, and structural element length make sense physically
when compared to the qualitative descriptions of the different snow types. Microscale
strength estimates are used to estimate macroscale strength values, and results from
33 different snow samples, covering a wide range of densities and snow types, are
consistent with previously reported values from macroscale tests.

Citation: Marshall, H.-P., and J. B. Johnson (2009), Accurate inversion of high-resolution snow penetrometer signals for

microstructural and micromechanical properties, J. Geophys. Res., 114, F04016, doi:10.1029/2009JF001269.

1. Introduction

[2] Snow microstructure and its related physical and
mechanical properties are of fundamental importance to
most scientific and engineering problems dealing with
snow. Due to the wide range of snow crystal types that
form, depending on atmospheric conditions, and the rapid
changes snow undergoes due to subsequent metamorphism
after it is deposited, snow microstructure exhibits large
variability in Nature. The microstructure has a great effect
on the physical, mechanical and electromagnetic properties
of snow. These properties cannot be accurately estimated
with bulk measurements such as density. As snow density
increases, due to metamorphic or compaction processes,
snow properties change from those of a foam-like material
at low density [e.g., Kirchner et al., 2001; Petrovic, 2003;
Schweizer et al., 2003] which are structure controlled, to a

porous solid at high density with properties that are con-
trolled by density. The transition density between foam-like
and porous solid-like behavior is not well defined, but is
likely between 400 and 600 kg m�3, based on changes in
snow microstructure and mechanical properties that occur at
those densities. This paper focuses on the range of snow
types that are strongly affected by microstructure, which
includes most seasonal snow. A different physical theory is
required for high-density snow and firn, and is beyond the
scope of this paper.
[3] Because snow strength depends strongly on micro-

structure, vertical profiles of snow grain size and shape are
used operationally in avalanche forecasting. The porosity of
snow is also controlled by microstructure. The vertical
profile of porosity within the snowpack determines the
routing of meltwater, and is an important parameter in snow
hydrologic modeling. The microstructure has a dominant
effect on the thermal conductivity of snow; therefore
estimates are necessary for accurately modeling temperature
profiles in seasonal snowpacks as well as in polar firn on the
major ice sheets [Dadic et al., 2008]. Microstructure con-
trols the compressive strength of snow, and is therefore
important for the mobility of animals and vehicles in snow
covered areas.
[4] Possibly the most important problem in snow hydrol-

ogy today is estimating the amount of water the snowpack
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represents, or the snow water equivalent (SWE), from
airborne and spaceborne platforms. Passive sensors are used
operationally to estimate SWE, once calibrated for a specific
region, however their spatial resolution is low (�25 km)
and uncertainties are high. Active microwave radar has
shown promise and has the advantage of much higher
spatial resolution (�5–100 m), but is not currently used
to estimate SWE. The major limitation of both active and
passive microwave measurements of snow is that they are
extremely sensitive to snow microstructure, which is pro-
hibitively difficult to measure over large areas with current
technology.
[5] Although characterizing snow microstructure is of the

utmost importance for avalanche forecasting [e.g., McClung
and Schaerer, 1993], remote sensing [e.g., Rees, 2006],
snow hydrology [e.g., Colbeck and Anderson, 1982], engi-
neering [e.g., Shapiro et al., 1997], and even biology [e.g.,
Lundmark and Ball, 2008] in cold regions, current techni-
ques are either qualitative or time consuming and expensive.
Standard field measurements involve scraping a sample of
snow from the wall of a snowpit, observing the crystals with
a magnifying lens, and estimating grain size and shape.
Small samples of snow (�1000 cm3) can be preserved by
filling the void space with a chemical solution such as diethl
phthalate, and then later analyzed in the lab by cutting thin
sections and using polarizing filters, or by photographing
surface sections. These techniques are very labor intensive
and time consuming, but result in accurate, detailed descrip-
tions of snowmicrostructure. Recent studies have used X-ray
tomography to analyze samples in the laboratory with great
success [e.g., Kaempfer and Schneebeli, 2007; Flin et al.,
2003].
[6] While these laboratory techniques give very accurate

microstructure information, they cannot be used in the field
to measure microstructure over large areas, because they are
too time consuming. Standard field observations are qual-
itative and observer-dependent, complicating their applica-
tion in the context of modeling. A technique, which can
rapidly and quantitatively measure snow microstructure is
desperately needed [Shapiro et al., 1997], and would have
applications in all areas of snow science as microstructure is
known to vary widely over short distances.
[7] The SnowMicroPenetrometer (SMP) [Schneebeli and

Johnson, 1998; Johnson and Schneebeli, 1999] was recently
developed to accurately measure snow layering, hardness
and microstructure for snow avalanche and engineering
applications. A snow penetration theory was developed to
estimate microstructural and micromechanical parameters
from the SMP signal [Johnson and Schneebeli, 1999],
however most of the subsequent studies have focused on
the direct snow hardness measurement [e.g., Birkeland et al.,
2004; Kronholm et al., 2004; Lutz et al., 2007; Satyawali et
al., 2009] and empirical relationships between hardness
and other snow properties [e.g., Schneebeli et al., 1999;
Pielmeier and Schneebeli, 2003; Pielmeier, 2003]. While
there are many SMPs currently in use by scientists around
the world, a single analysis method has not become stan-
dardized, making it difficult to compare results from differ-
ent studies.
[8] Below we revisit the original physics-based micro-

mechanical theory [Johnson and Schneebeli, 1999] and a
more recent modification to this theory [Sturm et al., 2004],

and test the application of this method over a wide range of
microstructural parameters. We improve upon the theory by
adding four important modifications, which greatly reduce
errors in the inversion of the microstructural parameters
when applied to simulated SMP signals. The application of
this improved theory to real signals is discussed, the various
methods used to remove noise in the signal are described,
and example results from eight different snow types are
shown in detail. The results are promising, with derived
micromechanical properties that make sense when com-
pared to the qualitative descriptions of the eight snow types.
The microscale strength is used to estimate macroscale
strength values for 33 different samples covering a wide
range of densities. These macroscale values are shown as a
function of density and compared with previous studies on
macroscale samples, with good agreement. The code used
for this analysis is open and freely available upon request,
and it is the hope of the authors that this work will help to
standardize initial SMP analysis for micromechanical prop-
erties to aid in comparing results from different independent
studies.

2. Review of Previous Snow Penetration Theory

[9] We begin with a brief review of the snow penetration
theory first developed by Johnson and Schneebeli [1999]
and later modified by Sturm et al. [2004], as it is critical to
the following description of our more recent improvements.
[10] Johnson and Schneebeli [1999] developed the first

physics-based approach for analyzing SMP signals to deter-
mine the microstructural, micromechanical, and macroscale
mechanical properties of snow. This theory of snow pene-
tration assumes that the SMP force distance record is due to
elastic deflection and brittle failure of individual snow
microstructural elements, and ice/SMP friction. A micro-
structural element is defined as the smallest volume of ice
matrix material that supports an applied load in the snow.
The microstructural elements are modeled as cellular solid
units, where a cell is an enclosed (or surrounded) space and
a cellular solid is a cell with solid edges [Gibson and Ashby,
1997] made up from the ice matrix. Compaction of failed
elements is taken to be negligible (reasonable for lower-
density snow), and the elements are assumed to have a mean
constant dimension, L, and are randomly distributed. Each
element ruptures at a rupture force, f, and at a deflection
length, d, which is less than L. The three basic structural
parameters that can be identified from the deformation and
failure of individual elements (L, d, f ) are illustrated in
Figure 1.
[11] Force spikes in the SMP record are assumed to

represent the rupture of individual elements, and the vertical
force distance record is first transformed to distances and
forces normal to the penetrometer tip, accounting for
friction between the tip and the ice matrix. The displace-
ment, in the direction normal to the tip, d = dz sin q, is a
function of the tip shape, where dz is the displacement
measured in the vertical direction, and q is the half angle of
the penetrometer cone tip. The total force in the direction
normal to the tip, F, is

F ¼ Fz

sin qþ m cos q
ð1Þ
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where m is the coefficient of friction between the
penetrometer and the ice matrix, and Fz is the total force
measured by the SMP in the vertical direction. These
geometrical corrections to the distance and force calculate
their respective component in the direction normal to the
SMP tip. These corrections are performed at the beginning
of the analysis; all force and distance values used in
equations and discussions below imply this normal
component of force and distance.

2.1. Structural Element Length

[12] The structural element length is related to the number
of ruptures per mm. Johnson and Schneebeli [1999] first
defined the structural element length assuming that each
element occupies a cubical volume, Ve = L3, and the total
volume deformed is VT = Az = pr2z, where A = pr2 is the
base area of the of the penetrometer tip. During the distance
z the penetrometer records N ruptures. Assuming that each
drop in the force signal represents the rupture of an
individual element, we can estimate the structural element
length, L, averaged over the distance z as

L ¼ 3

ffiffiffiffiffiffi
VT

N

r
¼ 3

ffiffiffiffiffiffiffiffiffi
pr2z
N

r
ð2Þ

Sturm et al. [2004] modified this relation by assuming that
each element instead occupies a spherical volume, Ve =

4
3
prS

3,
where the radius of the sphere, rS = L/2. The structural
element length in this case is

L ¼ 3

ffiffiffiffiffiffiffiffiffi
6r2z

N

r
ð3Þ

The two equations differ by a constant factor of
3 ffiffiffiffiffiffiffiffi
6=p

p
=

1.24; in the following we shall use equation (2); however,

using equation (3) has little effect on the results of the
following analysis. Estimating L from a penetrometer signal
therefore requires only a measurement of the number of
ruptures per mm.

2.2. Rupture Force

[13] One of the basic assumptions of the theory is that
sharp drops in the force-distance record are the result
of individual structural elements rupturing. Therefore, by
locating the maxima and minima in the signal, each indi-
vidual rupture force can easily be calculated. Both previous
studies calculated the average rupture force over a distance z
in which N ruptures occurred as

f ¼

XN

i¼1 fi

N
ð4Þ

where fi is the rupture force for an individual element
(difference in force from a local maximum to the next local
minimum) calculated in the direction normal to the
penetrometer tip. Noise in the SMP signal can cause
fluctuations which are not caused by ruptures of individual
elements – several methods have been used to remove
noise, and are discussed in section 5.

2.3. Deflection at Rupture

[14] Snow behaves nearly linear elastically with brittle
failure at strain rates above 10�3 s�1 [e.g., Shapiro et al.,
1997]. Since strain rates in snow during an SMP measure-
ment are well above this threshold (penetration rate is
20 mm s�1, strain rates are on the order of 10 s�1), each
element is assumed to undergo a linear elastic displacement
and rupture within a distance L. Johnson and Schneebeli
[1999] assumed that element locations can be described by a

Figure 1. Structural element model and three basic parameters: the structural element length, L, the
deflection at rupture, d, and the rupture force, f.
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uniform random distribution, therefore the probability of
contact of any microstructural element is

Pc ¼
d
L
¼ Ne

Na

ð5Þ

[Gibson and Ashby, 1997], where the number of available
elements, Na = A/L2, and Ne is the number of engaged
elements. When engaged, a structural element contributes to
the total force by an amount between zero and f. Since
element behavior is linear elastic, the average contribution
of any engaged structural element is f/2. The mean total
penetration force normal to the tip, Fm, is therefore

Fm ¼
f

2
Ne ¼

f

2
NaPc ¼

f

2

A

L2

� �
d
L

� �
¼ fAd

L3
ð6Þ

Solving this equation for the deflection at rupture, d, and
using equation (2) we have

d ¼ Fm

Af
L3 ¼ Fm

A

N

XN
i¼1

fi

0
BBBB@

1
CCCCA

Az

N

� �
¼ FmzXN

i¼1
fi

ð7Þ

This estimate of deflection at rupture, d, does not depend on
the number of measured ruptures, but only the mean total
force, Fm, the penetration distance, z, and the sum of all the
individual rupture forces, fi.
[15] Sturm et al. [2004] removed the assumption that the

individual element locations were distributed randomly by
directly calculating the number of engaged elements, Ne.
They calculated the contribution of each engaged element to

the total peak force, FT. Each engaged element contributes a
fraction of its rupture force, proportional to the amount each
element has been deflected. The total force at a given peak,
FT, is the sum of the contributions of all engaged elements,
and can be expressed as

FT ¼ f þ f

d
d �Dd1ð Þ þ f

d
d �Dd2ð Þ þ � � � þ f

d
d �Ddnð Þ

FT ¼ f
XNe

i¼0
1�Ddi

d

� �
ð8Þ

where Ddi is the distance from the current peak to the
rupture of the ith element, d � Ddi is the current deflection
of the ith engaged element, and Dd0 = 0. An example with
Ne = 2 is shown in Figure 2. The deflection at rupture, d,
and the number of engaged elements, Ne, are initially
unknown. The right-hand side of equation (8) is calculated
iteratively, assuming d = Ddn+1 and increasing Ne, until the
calculated total peak force exceeds the measured total peak
force. When this condition is reached, Ne is known and

d ¼ DdNeþ1 ð9Þ

2.4. Derived Micromechanical Parameters

[16] From these three basic microstructural parameters,
Johnson and Schneebeli [1999] derived several microme-
chanical parameters. Assuming linear elastic behavior with
brittle failure and no plastic deformation, calculated from
zero load and displacement, the coefficient of elasticity, or
the stiffness, is

k ¼ f

d
ð10Þ

Figure 2. Two engaged structural elements and their sum. Shown are the rupture force, f, the deflection
at rupture, d, the total force at the first peak, FT, the distance from the first peak to the second peak, Dd,
and the contribution to FT of the second element, Df.
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The microscale elastic modulus can be calculated as

Emicro ¼
k

L
¼ f

dL
ð11Þ

and the microscale strength is defined as

smicro ¼
f

L2
ð12Þ

These microscale quantities are associated with the
individual structural elements of the foam-like material,
and are not continuum-scale properties [e.g., Nemat-Nasser
and Hori, 1999]. In section 6.3 we estimate the macroscale
(continuum scale) strength from the microscale strength;
estimating the macroscale elastic modulus from SMP
measurements will be the subject of future work. Since
these microscale parameters are calculated directly from the
basic microstructural parameters, errors in the basic
parameters can cause even larger errors in the micromecha-
nical parameters; therefore it is important that the calcula-
tion of the basic microstructural parameters is accurate.

2.5. Accuracy of Previous Inversions

[17] Johnson and Schneebeli [1999] performed Monte
Carlo simulations using their theory of penetration and
found good agreement with measurements of zirconia foam
[Gibson and Ashby, 1997], indicating their assumptions
may be appropriate. They created simulated SMP signals
by adding together individual structural elements with
constant microstructural parameters: L = 1 mm, f = 0.1 N,
and d = 0.2 mm, and three different values of the number of
available elements, Na = A/L2 = 1, 10, and 25. The element
locations were chosen from a uniform random distribution,
and the simulated signal was generated by summing the
contribution of all elements. One example Monte-Carlo

realization for Na = 10 is shown in Figure 3, with the
individual elements on the top and the simulated signal on
the bottom. The three basic parameters are indicated for the
structural element shown with the thick line in the top.
[18] The analysis described above was applied to simu-

lated signals, and the results were compared to the micro-
structural values used to generate the simulation. They state
that for Na = 1 the parameters were recovered exactly, for
Na = 10 the error was about 5%, and for Na = 25 the error
was about 10%. Kronholm [2004] states that Monte-Carlo
simulations were used to test the accuracy of recovery and
that f and L (using equations (2) and (4)) had an error of less
than 0.01%, however the values of the parameters used in
the simulations were not given.

3. Improvements

[19] The error in the recovery of microstructural param-
eters increases rapidly as the number of available elements,
Na, increases, since many elements are in contact with the
SMP tip at a given time. It is therefore important to test the
accuracy of recovery throughout the observable range of
parameters, especially at higher values of Na, using the
actual measurement parameters of the SMP.
[20] Marshall [2005] used Monte-Carlo simulations for

Na = 25, L = 1 mm, d = 0.2 mm, and f = 0.1 N, following
Johnson and Schneebeli [1999], in an attempt at finding the
causes of error in the recovery of the parameters. He
suggested improvements to the analysis, and below we
further develop these ideas and test them over a wide range
of structural element sizes. The errors become very signif-
icant for large values of Na (small L), within the range
commonly observed in snow. These errors become even
more pronounced when the derived micromechanical
parameters are calculated, since they depend on the basic

Figure 3. (top) Many structural elements and (bottom) their summed contribution. The three basic
parameters are shown for the first element with the thick line in the top.
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microstructural parameters L, f, and d. It is therefore critical
to minimize these errors for accurate inversion.
[21] After much trial and error, the four major modifica-

tions that significantly reduced the error in the recovery of
the basic microstructural parameters were (1) accounting for
simultaneous ruptures, (2) solving for deflection at rupture
exactly, (3) using individual rupture forces when calculating
deflection at rupture, and (4) correcting rupture forces for
force increases during rupture events. Each of these mod-
ifications affects the accuracy of the retrieval of the three
microstructural parameters in different ways, and all mod-
ifications are necessary for accurate retrieval of all three
parameters. The modifications are discussed in detail in
sections 3.1–3.4, and their effect on the retrieval accuracy is
discussed in section 4.

3.1. Account for Simultaneous Ruptures

[22] Marshall [2005] found that the major cause of error
was due to more than one element rupturing at once, which
is a violation of one of the basic assumptions of the analysis.
This caused an underestimate of the number of ruptures, N,
which led to an overestimate of the structural element
length, L, (see equation (2)) and an overestimate of the
mean rupture force, f, (see equation (4)). These simulta-
neous ruptures were common over a wide range of the
observed values of L in snow, when the actual sample
frequency, Fs, of the SMP was used in the simulations.
Since the calculation of the deflection at rupture, d, using
the Johnson and Schneebeli [1999] method involves the
sum of all the rupture forces,

P
fi, but not the mean rupture

force f , (see equation (7)) the deflection at rupture, d, was
not sensitive to simultaneous ruptures. The calculation of
the deflection at rupture, d, using the Sturm et al. [2004]
method (equation (9)), however, does depend on the mean
rupture force, f , and therefore an overestimate in f caused
an underestimate in d. The number of simultaneous ruptures
depends strongly on the sample frequency, Fs, of the SMP,
the area of the SMP tip, A, and the structural element
length, L.
[23] Marshall [2005] developed a method for accounting

for simultaneous ruptures, which used a theoretical estimate
of the probability that two elements would overlap. Since
simultaneous ruptures always cause an increase in the
calculated value of individual rupture forces, the theoretical
estimate was used to adjust the largest rupture forces,
assuming that they were caused by simultaneous ruptures.
For the Monte-Carlo simulations involving the constant
microstructural parameters above, this method corrected
the errors caused by simultaneous ruptures. However, when
the microstructural parameters were varied within the sim-
ulation, this method did not work properly. In addition, for
smaller values of L, the probability of an overlap occurring
became extremely large and, again, the method was no
longer valid.
[24] In the present analysis we instead used Monte-Carlo

simulations to directly predict the number of simultaneous
ruptures, as a function of L. The base area of the penetrom-
eter tip was fixed at the value for the current SMP (A = pr2 =
19.6 mm2); the deflection at rupture, d = 0.2 mm, and the
mean rupture force, f = 0.1 N, were held constant. The SMP
sample frequency, Fs = 250 samples mm�1, was used. The

number of measured ruptures, as a function of L, was
calculated for 0.3 � L � 3 mm. For each value of L, in
steps of 0.01 mm, a 10-m Monte-Carlo simulated SMP
signal was generated, containing 2,500,000 simulated force
measurements. This signal was analyzed in both 1-mm and
10-mm segments, and the distribution of measured ruptures
was recorded.
[25] The number of measured ruptures per mm Nm as a

function L is shown in Figure 4. The shaded areas show
the 95% confidence intervals for analyzing both 1-mm and
10-mm segments. The error in the calculated L (see
equation (2)) becomes large as the structural element size
decreases, and is much less when a 10-mm sample is
analyzed compared to a 1-mm sample.
[26] These simulation data were smoothed using a

weighted moving window with a normal kernel and a
window width of 0.1 mm. To account for multiple ruptures
in a measured SMP signal, the number of measured ruptures
per mm, Nm, was first calculated. The smoothed simulation
data were next interpolated at Nm using a cubic spline and the
structural element size, with confidence intervals, L(Nm) ±
DL(Nm), was estimated. Finally, the true total number of
ruptures in the penetration distance z was calculated as in
equation (2):

NT ¼
Az

L3
ð13Þ

This true value of the number of ruptures was used instead
of the measured number of ruptures, N, to calculate the
mean rupture force

f ¼

XN
i¼1

fi

NT

ð14Þ

as well as the deflection at rupture, d( f,FT), using equation (9).

3.2. Solve Exactly for Deflection at Rupture

[27] In the Sturm et al. [2004] approach, the total pene-
tration peak force was calculated iteratively, until it
exceeded the measured total force, at which point the
deflection at rupture, d = Ddn+1 (equation (9)), was chosen.
The actual value of d is between Ddn andDdn+1, and can be
calculated exactly. Assuming that f is constant, the deflec-
tion at rupture can be calculated as

d ¼

XNe

i¼1
Ddi

Ne � FT

f

ð15Þ

after the number of engaged elements, Ne, is found from the
iterative calculation. This correction is negligible when
there are many engaged elements (small L), however it
becomes very important for coarse-grained snow when
there are fewer engaged elements (large L).

3.3. Use Individual Rupture Forces to Calculate
Deflection At Rupture

[28] Since the assumption of constant microstructural and
micromechanical parameters is clearly unrealistic for snow,

F04016 MARSHALL AND JOHNSON: INVERSION OF SMP SIGNALS

6 of 18

F04016



we further modified the theory to remove the restriction that
f is constant by rewriting equation (8) as

FT ¼ f0 þ f1 1�Dd1

d

� �
þ f2 1�Dd2

d

� �
þ . . .þ fNe

1�DdNe

d

� �

ð16Þ

where each individual rupture force, rather than the mean
rupture force, is used to calculate the total peak force. The
equation for deflection at rupture, d, then becomes

d ¼

XNe

i¼1
fiDdi

XNe

i¼0
fi � FT

ð17Þ

If f varies substantially, as occurs in natural snow with
distributions of microstructural parameters [e.g., Kaempfer
and Schneebeli, 2007], this modification to the theory
becomes important. In addition, this calculation of deflec-
tion at rupture does not depend on the total number of
measured ruptures, Nm, only on the sum of the individual
ruptures. Therefore improvements (sections 4.2 and 4.3)
make the calculation of deflection at rupture, d, insensitive
to simultaneous ruptures, which was the major source of
error.

3.4. Correct Rupture Force Digitization Error During
Rupture

[29] When simultaneous ruptures do not occur, the value
of f is still underestimated. This occurs because when
multiple elements are engaged, a drop in force from a

rupture occurs simultaneously with an increase in force
due to the deformation of the other engaged elements,
reducing the overall force drop. To correct for this, we used
the slope of the force curve immediately after the rupture to
estimate the increase in force caused by the other elements’
increased deformation during the element rupture event:

fi ¼ fi þ
@F

@z
Dz ð18Þ

where @F/@z is the slope of the force-distance record
immediately after the ith rupture, and Dz is the distance
traveled during the rupture. This modification is trivial
when there are few elements engaged, but becomes
important when Ne is large (small L).

4. Accuracy of Inversion Applied to Simulated
Signals

[30] Because the accuracy of retrieval of microstructural
parameters depends strongly on the structural element
length, L, we performed extensive Monte-Carlo simulations
over a wide range of values of this parameter. A 1-m long
simulated SMP signal, composed of 250,000 force measure-
ments, was created using constant parameters (d = 0.2 mm,
f = 0.1 N) covering the range of structural element lengths
we have measured in natural snow (0.59 � L � 2.5 mm).
For structural element lengths less than 0.59, inverting for a
unique value of L is not possible (see Figure 4), due to the
sample rate of the SMP (250 samples mm�1). We therefore
did not attempt to simulate signals with L less than 0.59
since it is clear that we would not be able to invert such a
signal uniquely. The signals were analyzed in 10-mm
sections for a total of 100 independent subsamples for each

Figure 4. Number of measured ruptures per mm, Nm, as a function of input structural element length, L.
Shown are the ranges of measured ruptures from Monte-Carlo simulations of 2,500,000 force
measurements, at each value of L, for both 10-mm (dark gray) and 1-mm (light gray) samples, as well as
equation (2) from Johnson and Schneebeli [1999] (dashed line).
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value of L. Below we describe the effect of each of the
above modifications on the accuracy of the retrieval of each
basic microstructural parameter. In the section 4.4, we further
explore the parameter space by testing the accuracy of
retrieval over the range of all three basic parameters (d, f, L)
observed in natural snow.

4.1. Structural Element Length Retrieval

[31] For an element rupture to be captured in an SMP
signal, a minimum of four force measurements are required,
to define the rupture force: in addition to the measurement
at the local maximum and the local minimum, a measure-
ment before the maximum and after the minimum is
required in order for a local maximum and local minimum
to be defined. The maximum number of ruptures that can be
measured in 1 mm is approximately Fs/4 � 63 (Figure 4);
there is a lower limit of L � 0.59 mm below which the
structural element length can no longer be uniquely esti-
mated. This limitation is due to the sample frequency,
however does not depend on the cone diameter. Changing
the cone diameter would change the likelihood of simulta-
neous ruptures shown in Figure 4, but not the lower limit of
measurable values of L. In order to decrease this lower
limit, the sample frequency would need to be increased. The
uncertainty in the estimate of L also increases at large values
of structural element length, due to the slope of the curve in
Figure 4. At large values of L, where the number of
elements is very small, a small uncertainty in the total
number of elements per mm corresponds to a large uncer-
tainty in L.
[32] The percent error in the retrieval of the structural

element length as a function of the structural element length
is shown in Figure 5. The black line shows the median error

when equation (2) is applied, and the gray shaded region
indicates the 95% range, over all 100 Monte-Carlo simu-
lations at each value of L. This estimate is biased and
overestimates the value of L for small structural element
lengths, due to simultaneous ruptures. Using the previous
estimate for L (equation (2)) causes an average overestimate
of more than 20% for L = 0.6 mm, decreasing to 5% for L =
1.0 mm. The 95% range increases with increasing L as the
structural element length approaches the subsample size.
[33] The red line shows the median error when simulta-

neous ruptures are accounted for, as described in section 3.1,
and the red shaded region shows the 95% range over all the
simulations. The median error is less than 1% over the entire
range of values of L, and the 95% range coincides with the
uncertainty estimated from Figure 4. This variation is
caused by true variation in the number of measured ruptures
for a 10-mm sample, and could only be reduced by
analyzing longer signals; the variation would be more than
twice as large for a 1-mm sample analyzed rather than a
10-mm sample. This improvement becomes even more
important when the derived micromechanical properties
are calculated; in particular the microscale strength depends
strongly on L (equation (12)). For example, for f = 0.1 N
and L = 0.75 mm, without modification 1 (M1), L is
overestimated by 10%, causing an underestimate in smicro
of more than 18%. Modifications 2–4 (M2–M4) do not
have an effect on the structural element length.

4.2. Rupture Force Retrieval

[34] Simultaneous ruptures, which appear as one large
rupture in the SMP signal, cause an overestimate in the mean
rupture force f. The mean rupture force is sensitive to simul-
taneous ruptures, since f is proportional to N�1. Figure 6

Figure 5. Accuracy of inversion for structural element length, L, as a function of input value of L. One
hundred Monte-Carlo simulations of 10-mm signals were performed for each value of L. The black line
shows the median result of equation (2), and the red line shows the median when simultaneous ruptures
are taken into account (M1). The shaded areas show the 95% range over all simulations.
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shows the percent error in the inversion for rupture force, as
a function of structural element length.
[35] The black line shows the median error when

equation (4) is applied and the shaded gray region indicates
the 95% range over all 100 Monte-Carlo simulations at each
value of L. This estimate is biased and overestimates the
value of f, due to simultaneous ruptures. The 95% range is
not sensitive to the value of L.
[36] The red line shows the median error when simulta-

neous ruptures are accounted for (M1, section 3.1), and the
red shaded region shows the 95% range over all the
simulations. When this modification is applied, the rupture
force is underestimated, by as much as 30%, for small
values of L. The blue line and shaded region shows the
median and 95% range when both simultaneous ruptures are
accounted for and f is corrected for digitization errors (M1
and M4). The resulting estimate is now unbiased, with a
median value that is less than 2% over the entire range of
values of L. Both of these modifications are necessary for
accurate inversion of rupture force. The 95% range is less
than 10% and is caused by true variations in the number of
measured ruptures in the 10-mm subsamples, and would
decrease with longer subsamples. Modifications M2 and
M3 do not have an effect on the rupture force.

4.3. Deflection at Rupture Retrieval

[37] The original calculation of deflection at rupture
(equation (7)) is not sensitive to multiple ruptures, since it
depends only on the mean total penetration force and the
sum of all the individual ruptures. However, for small
values of L when there are many elements engaged, the
retrieval error is large due to errors caused by digitization.

[38] Figure 7 shows the percent error in the inversion for
deflection at rupture, as a function of L. The black line and
gray shaded region show the median error and 95% range
when equation (7) is applied, over all simulations. This
overestimates d by almost 50% for L = 0.6 mm, decreasing
to 10% at L = 1 mm. For L > 1.3 mm, there are few elements
engaged at once, and the error is less than 5%. The 95%
range increases slightly with increasing L, due to variations
in the number of ruptures in the 10 mm subsamples.
[39] The red line and shaded region show the error in the

inversion for d when equation (9) is used, as in the work by
Sturm et al. [2004]. This causes an error of almost 50% for
L = 0.6 mm, overestimates d over the entire range of L by at
least 20%, and the variation increases with increasing L.
The blue line and shaded region shows the error in the result
for equation (9), modified to calculate d exactly (M2,
section 3.2), and when the individual rupture forces are
used in the calculation (M3, section 3.3). This greatly
improves the accuracy, especially at large values of L,
however the accuracy is still poor for small values of L,
and is worse than equation (7) for large values of L.
[40] The green line and shaded region shows the result for

equation (9), with M2 and M3 applied, and in addition the
rupture forces are corrected for digitization errors (M4,
section 3.4). This results in a very accurate retrieval for d,
which is less than 2% over the entire range of L. In addition,
the variation over the 100 Monte-Carlo simulations is less
than ±0.5%, making the estimate very robust, as it does not
depend on the number of measured ruptures.
[41] For comparison, the yellow line and shaded region

shows the error in d with M4 applied. This estimate is also
very accurate, with a median error of less than 2% over the
entire range of L. The variation is much larger (>5%) than

Figure 6. Accuracy of inversion for rupture force, f, as a function of input value of L. The black line
shows the median using equation (4), the red line shows the median accounting for simultaneous ruptures
(M1), and the blue line shows the median using M1 and accounting for digitization errors (M4). The
shaded areas show the 95% range over all simulations.
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equation (9) using M2–4, for L > 1.5 mm, therefore using
equation (9) with M2, M3, and M4 is preferred.

4.4. Accuracy Over Range of All Three Parameters

[42] Although the accuracy of the inversion is most
sensitive to the structural element length, we investigated
the error for a range of all three microstructural parameters,
using all four modifications above. Using the range of
values found in natural snow, we performed Monte-Carlo
simulations for a range of values of structural element
length (0.6 � L � 1.5 mm), rupture force (0.05 � f �
0.45N), and deflection at rupture (0.05 � d � 0.75 mm). For
every possible combination of values, we again simulated a
1-m SMP signal, and applied the inversion algorithm to the
100 independent 10-mm subsamples. A total of 400 inde-
pendent combinations were tested, covering the range of
observed values in natural snow, with 100 independent
simulated signals analyzed for each combination.
[43] The accuracy of the inversion for both rupture force,

f, and structural element length, L, did not change for
different input values of f and d. The accuracy was only
sensitive to the input value of L. Figure 8 shows box plots
indicating the range of errors from all 40,000 Monte-Carlo
simulations for L (Figure 8, top) and f (Figure 8, bottom), as
a function of L. The mean error was always very close to
zero for all combinations, demonstrating that the inversion
algorithm is unbiased. The upper plot shows the error in
inverting for L and the lower plot shows the error in
inverting for f.
[44] The 95% range of the error in L increases from 5% at

L = 0.6 mm to 10% at L = 1.5, due to variations in the true
number of ruptures in a 10-mm subsample. Estimates have

an error less than 3% for all combinations of parameters
50% of the time, and the median error is always less than
0.5%. The 95% range in the error in f decreases from 12% at
L = 0.6 mm to 6% at L = 1.5 mm as the inversion for f is
most accurate for this parameter when fewer elements are
engaged. The middle 50% of the data show an error of less
than 4% over all combinations, and the median error is
always less than 1%.
[45] The accuracy of the inversion for deflection at

rupture, d, was insensitive to changes in rupture force, f,
but was sensitive to the input values of L and d. Figure 9
shows box plots indicating the range of error in d from all
40,000 Monte-Carlo simulations, as a function of d (Figure
9, top) and L (Figure 9, bottom). 95% of the time the error
in estimating d is less than 3%, with the exception of when d
is very small (�0.05 mm) for which the 95% accuracy is
less than 8%. The median values are always within 2% with
a very slight negative bias which decreases to less than
0.5% for d > 0.15 mm and L > 0.7 mm. Over the entire
parameter space our current inversion algorithm is very
accurate, and these error estimates can be used to assign an
uncertainty to the inversion results based on the values of
the three basic parameters.

5. Inversion of SMP Measurements of Natural
Snow

[46] Actual SMP measurements in natural snow include
variations in the force distance record caused by noise,
which must be removed before applying the inversion
algorithm described above. Although the resolution of the
force sensor is 0.001 N, measurements in air show fluctua-

Figure 7. Accuracy of inversion for deflection at rupture, d, as a function of input value of L. The black
line shows the median using equation (7), the red line shows the results from using equation (9), and the
blue line shows the results from equation (9) when d is solved for exactly (M2) and all rupture forces are
used (M3). The green line shows the results when M2, M3, and M4 are applied, and the results of
equation (7) using M4 are shown in yellow. The shaded areas show the 95% range over all simulations.
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tions on the order of 0.01 N. It is possible that once the SMP
rod is in the snowpack, vibrations of the rod are dampened,
however force spikes caused by effects other than ruptures
of structural elements may also increase with increasing
maximal penetration force. Several different methods have

been used to remove unwanted fluctuations in the signal,
described below.
[47] Johnson and Schneebeli [1999] located all of the

maxima and minima in the signal, used these to calculate
rupture forces, and removed all ruptures with a value of fi

Figure 8. Accuracy of inversion for (top) structural element length, L, and (bottom) rupture force, f, as a
function of input value of L. Box plots show the range over 40,000 Monte-Carlo simulations covering the
range of observed values of all three basic microstructural parameters. The box shows the middle 50% of
the data, the whiskers show 95%, and the plus symbols are outliers.

Figure 9. Accuracy of inversion for deflection at rupture, d, as a function of (top) input value of d and
(bottom) input value of L. Box plots show the range over 40,000 Monte-Carlo simulations covering the
range of observed values of all three basic microstructural parameters. The box shows the middle 50% of
the data, the whiskers show 95%, and the plus symbols are outliers.
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less than a certain threshold. The threshold was chosen
based on SMP measurements in air. Kronholm [2004] used
a rupture slope threshold method, in which the slope of the
SMP signal during a rupture had to exceed some minimum
slope requirement. He investigated the sensitivity of the
macroscale elastic modulus estimate to the rupture force
threshold, and found that the sensitivity depended on snow
type. He presented results from two different snow types
and found that a rupture slope of �0.45 N mm�1 gave the
results with the least variance. He used this threshold in
subsequent calculations, but stated that effect of the choice
of rupture slope threshold required further investigation.
[48] Sturm et al. [2004] first removed a linear trend in the

SMP signal, which they assumed was caused by static
electric charge buildup in the load sensor’s charge amplifier.
For large penetration forces, a high-frequency, low-amplitude
chatter was observed which was removed with a binomial

smoothing filter. Finally, a cubic spline was fit to the
detrended, filtered SMP signal, and subtracted. The remain-
ing residual signal was used to locate force ruptures, and all
of these ruptures were used. This may be the reason this
study found structural element length values much less than
those found in the Johnson and Schneebeli [1999] study,
both of which used Alaskan snow. The different noise
removal approaches [Johnson and Schneebeli, 1999; Sturm
et al., 2004; Kronholm, 2004] all have different effects on
the results, making comparisons between studies impossi-
ble, highlighting the need for an improved inversion method
that can be used to standardize SMP analysis methodology.

6. Application of Improved Inversion to Eight
Snow Types

[49] To illustrate the results of the inversion procedure
described in this paper, below we show detailed examples of
eight distinctly different snow types, from both Alaskan and
alpine environments. Four of these snow samples were from
the same measurements used by Johnson and Schneebeli
[1999], and four were from an alpine snowpack. Table 1
lists all eight snow types, their class and subclass according
to the International Classification for Seasonal Snow on the
Ground [Fierz et al., 2009], density, and grain size.
[50] A 10-mm section was chosen from the center of each

sample, and these force records are shown on a semilog
scale in Figure 10. The force values cover several orders of
magnitude, and have different variances and frequencies in
these distinctly different types of snow. Within each snow
type the signal characteristics are consistent over the entire
10-mm sample.

Table 1. Description of Eight Snow Samples

Sample Snowpack
ICSSG
Code Description

Density
(kg/m3)

Grain
Size (mm)

A1 Alaskan RGlr Large rounded particles 229 0.6
A2 Alaskan MFcr(DH) Refrozen depth hoar 280 1.2
A3 Alaskan DHch Depth hoar/chains 238 1.2
A4 Alaskan RGwp Rounded grains/wind

packed (slab)
400 0.4

B1 alpine PPsd Precipitation particles/
stellars/dendrites

210 0.5–1

B2 alpine RGlr Large rounded particles 275 1
B3 alpine DHpr Depth hoar/hollow

prisms
325 1–2

B4 alpine IFsc Ice formation/sun crust 400 1–2

Figure 10. Force distance record from eight different snow types: (left) four from Alaska and (right)
four from an alpine snowpack on a semilog scale. Force values cover 3 orders of magnitude. Each snow
type has a very different magnitude, variance, and frequency, but within each snow type these signal
characteristics are consistent along the entire 10-mm sample (2500 measurements). The legend shows the
sample label, class, and subclass corresponding to Table 1.
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[51] The legend indicates the snow sample label, and the
class and subclass code, corresponding to Table 1. Johnson
and Schneebeli [1999] used the following four-letter abbre-
viations for their four snow samples, based on the location
of the sample and a description of the snow type: sample A1
is Glass Park equilibrium (GPEQ), sample A2 is Valdez
refrozen depth hoar (VDH), sample A3 is Glass Park depth
hoar (GPDH), and sample A4 is Rainbow Mountain wind
slab (RMWS). Sample A4 was shown to have a periodic
signal [Pielmeier, 1998], possibly caused by a stick-slip
mechanism, therefore results for this snow sample should be
interpreted with caution.

6.1. Basic Microstructural Parameters

[52] Using the inversion algorithm described above, basic
microstructural parameters were calculated for all eight
snow types. A rupture force threshold of 0.0165 N, normal
to the tip, was used, based on the fluctuations of the SMP
signal in air. Since each sample was only 10-mm long, each
sample was subdivided into 6 overlapping 5-mm subsec-
tions. The deflection at rupture, d, (Figure 11, top) and
structural element length, L, (Figure 11, bottom) are shown
for the eight snow types as box plots. The values of
deflection at rupture are significantly different for almost
all eight snow types, and the new snow (sample B1) shows
the largest value, as expected.
[53] The structural element length, L, can be interpreted

as the mean distance between bonds. The precipitation
particles (sample B1) have the largest value of L as
expected, since this new snow sample has had little time
to sinter and therefore likely has few bonds. The depth hoar
samples (A3 and B3) have the next largest structural
element length, which also makes sense as this type of

snow is characterized by large grains with few bonds. The
depth hoar sample that has undergone a melt freeze cycle
(sample A2) and the sun crust (sample B4) have lower values
of L, likely due to bonds formed from refrozen liquid water,
followed by the two rounded grain samples (A1 and B2),
which agree with the qualitative description of rounded
grains typically having many bonds. The smallest value of
L occurs in the wind packed rounded grains, which also
makes sense, since the wind causes the snow to become
very closely packed allowing many bonds to form. All eight
snow types have distributions of L that are different and do
not overlap. Without the modifications described above, the
smaller L values would be overestimated, causing all values
to be much closer in magnitude, and this parameter would
not be nearly as useful for classifying snow type.
[54] Figure 12 shows the rupture force, f, (Figure 12, top)

and strain at failure,

ef ¼
d
L
;

(Figure 12, bottom) for the eight snow types. For the
Alaskan samples the wind packed snow (A4) has the largest
rupture force, followed by the refrozen depth hoar (A2),
with the smallest values of f for the depth hoar (A3) and
rounded grains (A1). In the alpine samples, the sun crust
(B4) shows the largest rupture forces, with smaller values
for the rounded grains (B2) and depth hoar (B3), and the
smallest rupture force values for the precipitation particles
(B1), as expected.
[55] The values of all three basic parameters are well

separated, and vary with different trends for each parameter.
This indicates that it should be possible to develop a snow

Figure 11. Box plots of (top) deflection at rupture, d, and (bottom) structural element length, L, for all
eight snow samples. Details of each snow type are given in Table 1. The box shows the middle 50% of
the data, the whiskers show 95%, and the plus symbols are outliers.
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characterization index from these basic microstructural
parameters, although this is beyond the scope of this paper.
By standardizing the inversion algorithm, results from
different studies can be directly compared, which will
hopefully lead to such a characterization. A recent study
has shown promising preliminary results for a snow char-
acterization using basic statistics of the SMP hardness
measurement [Satyawali et al., 2009]; adding these micro-
structural parameters to such a characterization may improve
the accuracy. The advantage of using parameters from this
physics-based inversion is that they make sense physically
based on the known properties of different snow types.

6.2. Derived Micromechanical Parameters

[56] Figure 12 (bottom) shows the strain at failure:

ef ¼
d
L

ð19Þ

All four alpine samples have very different values of ef, with
precipitation particles (B1) showing the most deformation
before failure (more than 60%), followed by the rounded
grains (B2), then the depth hoar (B3); the brittle sun crust
(B4) shows the least strain before failure, as expected. The
Alaskan snow samples show much smaller values of strain
in the rounded grains (A1) and the depth hoar (A2 and A3),
which is not surprising given the much larger temperature
gradients in this environment. This indicates that the
qualitative descriptions of snow types can be limited when
comparing snow from different environments.
[57] The microscale elastic modulus, Emicro (equation (11)),

and the microscale strength, smicro (equation (12)), are

shown in Figure 13. Figure 13 (top) shows the elastic
modulus, and Figure 13 (bottom) shows the strength. For
the Alaskan samples, the values of Emicro are largest for the
refrozen depth hoar (A2), followed by the wind packed
snow (A4) and rounded grains (A1), and smallest for the
depth hoar (A3). The alpine snow samples show a similar
trend, with the sun crust (B4) having the largest values of
Emicro, followed by the rounded grains (B2), then the depth
hoar (B3), and finally the precipitation particles (B1). The
microscale elastic modulus, Emicro, which is a parameter that
is independent of the SMP properties and is useful from an
engineering standpoint, has a trend that makes physical
sense for all eight snow samples.
[58] The microscale strength (Figure 13, bottom), smicro,

shows the strongest values for the wind packed snow
(sample A4), the sun crust (sample B4) and refrozen depth
hoar (sample A2), followed by the rounded grains
(samples A1 and B2) and depth hoar samples (A3 and
B3). Finally the lowest values were measured in the
precipitation particles (B1). The microscale strength, smicro,
, which is also a very useful engineering parameter and is
independent of the properties of the SMP, also has a trend
that makes physical sense for all eight snow samples.
[59] These micromechanical properties are also well sep-

arated and have different trends for each property over the
eight snow types; the different trends indicate that the
properties are not correlated and therefore can be used in
combination to characterize snow type. It appears that the
samples from the Johnson and Schneebeli [1999] study,
which were taken in an Alaskan environment, have very
different properties than the other four snow types, which
were measured in an alpine environment. The snow in

Figure 12. Box plots of (top) rupture force, f, and (bottom) strain at failure, ef, for all eight snow
samples. Details of each snow type are given in Table 1. The box shows the middle 50% of the data, the
whiskers show 95%, and the plus symbols are outliers.
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Alaska is subject to much colder temperatures, much larger
temperature gradients, and more extreme maritime condi-
tions, therefore this is not at all surprising since the
metamorphism in these two environments is very different.

6.3. Macroscale Strength Estimates

[60] Although the microscale estimates of strength and
elastic modulus provide a way to characterize snow type, to
apply these estimates to problems at larger scales, micro-
scale quantities must be converted to macroscale values.
The macroscale strength is controlled by the number of
engaged elements, and can be estimated as [Johnson and
Schneebeli, 1999]

smacro ¼ smicroPc ¼
f

L2
d
L
¼ f d

Ve

ð20Þ

Macroscale strength estimates were calculated for 33 different
snow samples, covering a wide range of densities. These
values are shown in Figure 14 (left) as a function of density
(circles) along with the range of snow strengths measured in
previous studies (in gray), from the extensive review by
Shapiro et al. [1997]. The vertical error bars indicate the
range of these estimates within each sample and the
horizontal error bars indicate the estimated uncertainty in
the density measurements (±5%).
[61] It should also be noted that the values of snow

strength reported in the literature were typically performed
on sieved snow, in order to provide a nearly homogenous
sample. Laboratory strength tests are also rarely performed
on depth hoar samples, due to the difficulty in sample
collection and testing, and are therefore usually performed
on nonfaceted sieved snow which has significantly different

mechanical properties. The SMP results, in contrast, include
natural dendritic, faceted, and refrozen snow.
[62] Three of the 33 points have error bars that lie

completely outside the range of previously reported values.
One of these samples had more than 55 ruptures mm�1, and
therefore the estimate of structural element length L (and
therefore strength) is highly uncertain since the value of L is
nonunique (see Figure 4). The other two outliers come from
two separate SMP measurements of a highly variable depth
hoar layer which, along a 10-m transect, had a measured
density range of 197–286 kg m�3. Since both the SMP
measurement and the independent density measurement are
destructive, these two measurements cannot be made in
exactly the same location, and therefore true spatial vari-
ability of natural snow may be the cause.
[63] In Figure 14 (right), the x axis is the density as

estimated from the SMP hardness measurement directly
[Pielmeier, 1998; Marshall, 2005]. The algorithm used to
calculated density was derived from the total penetration
force, using a wide range of snow types which may partly
explain the larger uncertainty in these estimates (±45 kgm�3).
Density should be related to total force (a proxy for
strength), however there is likely a different relationship
for each snow structure type. Developing density algorithms
for each of the primary snow types, and using microscale
parameters to identify snow type might improve the accu-
racy of SMP derived density. This will be investigated in
future work.
[64] Although this estimate has a much larger uncertainty,

we can be certain that both the density and strength
estimates are from exactly the same snow sample. Note
that the strength is calculated from the rupture force (based
on the variation of signal) and structural element length

Figure 13. Box plots of (top) microscale elastic modulus, Emicro, and (bottom) microscale strength,
smicro, for all eight snow samples. Details of each snow type are given in Table 1. The box shows the
middle 50% of the data, the whiskers show 95%, and the plus symbols are outliers.
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(based on the frequency of the signal), while the density is
calculated from the total force. This plot shows better
agreement with previously reported values, but has the
disadvantage that the density and strength estimates are
not completely independent, although they are calculated
from very different aspects of the signal.
[65] These values agree reasonably well with results from

macroscale tests reported in the literature, especially since
there are no "tunable" parameters in this analysis. The only
decision that must be made in the above analysis is the noise
removal procedure. The rupture force threshold used to
remove noise was chosen based on the results of SMP
measurements in air. This was done to keep the noise
removal objective, since our only estimate of the noise
level is from measurements before the SMP tip enters the
snow. More sophisticated noise removal procedures could
be developed, and if independent measurements of mechan-
ical properties or microstructure were available, this step of
the analysis could be improved.
[66] It is interesting to note that the SMP results lie

primarily in the range of compressive strength values, which
is also at the upper end of the range of previously measured
tensile strengths and is an order of magnitude larger than the
shear strength values in the literature. The SMP measure-
ment is an indentation test, and therefore this is not
surprising. In laboratory compression tests, samples often
fail in shear and other modes, however reported values of

compression strength are given as the stress required for a
sample to fail when loaded in compression, regardless of the
actual failure mechanism. In the same manner, in this SMP
analysis we do not specifically model the type of failure of
individual elements, which likely occurs in bending, ten-
sion, and shear. We therefore refer to the SMP derived
strength without specifying the exact mode of failure. The
trend in SMP estimates of strength as a function of density
is similar to that of previously reported measurements of
compressive and tensile strength. We could have improved
the agreement between our estimates and those previously
reported by including an arbitrary offset, however we chose
not to do so in order to avoid having any tunable parameters
in this algorithm. This potential offset could be due to an
effect of the shape of the SMP tip.
[67] Previous attempts at estimating the macroscale elas-

tic modulus Emacro have found the resulting values to be
2 orders of magnitude lower than those in the literature,
when compared as a function of density. This may be due to
the assumption of an isotropic structural element shape. The
frequency of rupture events in the SMP signal gives an
estimate of the structural element volume, however the
isotropic element shape assumption must be employed to
estimate the structural element length, L (equation (2) or (3)).
Resolving this problem of estimating the macroscale elastic
modulus from SMP measurements will be the subject of
future work.

Figure 14. Macroscale strength estimates, smacro, for 33 different snow samples covering a wide range
of densities. The light gray shaded area shows the range of literature values for strength tests performed in
tension, the medium gray area shows the range of reported values for shear strength, and the dark gray
area shows the range of values for compression tests [Shapiro et al., 1997]. The circles show the SMP
estimates of macroscale strength, and the error bars indicate the range of estimates within each sample.
(left) Strength estimates as a function of independent direct measurements of density, including the
estimated uncertainty in the density measurements (±5%). (right) Strength estimates as a function of
density estimated from the median SMP penetration force, with the corresponding estimated uncertainty
(±45 kg m�3).
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[68] If we remove the assumption of an isotropic struc-
tural element shape, the macroscale strength (equation (20))
can be expressed as

smacro ¼ smicroPc ¼
f

As

d
L
¼ f d

Ve

ð21Þ

where As is the cross-sectional area of the structural element
in the plane parallel to the SMP tip, L is the structural
element length perpendicular to the SMP tip as before, and
Ve = AsL is the structural element volume. This final form is
identical to equation (20).
[69] The macroscale strength, smacro, therefore, depends

only on the structural element volume Ve, rather than on the
structural element length L. The structural elements were
assumed by Johnson and Schneebeli [1999] to have a
cubical shape, and by Sturm et al. [2004] to have a spherical
shape, in order to estimate the structural element length, L,
from the volume, Ve. The macroscale strength estimate
(equation (21)), however, does not assume any specific
shape of the structural elements.

7. Conclusions

[70] Measurements of snow using the SnowMicroPene-
trometer show detail at many different scales. The resolution
of this instrument allows interpretation of the measurement
in the context of microstructural and micromechanical
properties of snow. A physical snow penetration theory
was first developed by Johnson and Schneebeli [1999] with
subsequent modifications by Sturm et al. [2004], Kronholm
[2004], and Marshall [2005], however most SMP studies
have focused on the statistical properties of the direct
hardness measurements.
[71] In this paper the original and modified physical snow

penetration theories were rigorously tested, using Monte-
Carlo simulations over a wide range of microstructural
parameters, revealing that in many situations the theories
caused large inaccuracies and the predictions were largely
biased. Four major sources of error were determined and a
new inversion algorithm was developed and introduced to
the theory which corrected these problems. The new algo-
rithm was tested over the entire range of parameters
observed in snow and was found to recover all the param-
eters with a much higher accuracy: errors in retrievals are
less than 5% in almost all situations, and less than 2% on
average, compared with errors of up to 50% using the
previous methods.
[72] This new unbiased method was applied to measure-

ments of eight different types of snow from both Alaskan
and alpine environments. The structural element length L
agreed well with our qualitative understanding of the
frequency of bonds in these different snow types. Because
the connectivity of snow grains via bonds is important for
remote sensing of snow and avalanche forecasting, this
parameter may prove to be useful, especially since visual
observations of grains and bonds are time consuming and
highly subjective. The microscale mechanical parameters
showed patterns that made sense physically when compared
to the qualitative descriptions of the eight types of snow.
This indicates that these micromechanical parameters (e.g.,

Emicro, smicro) may be very useful from an engineering and
slope stability perspective.
[73] The macroscale strength, smacro, estimated from

SMP measurements of 33 different snow types, spanning
a wide range of densities, agreed well with previously
reported values, without introducing any adjustable param-
eters into the theory. The macroscale strength estimate does
not require an assumption of the geometry of the structural
elements (however there may be some dependence on the
shape of the penetrometer tip since it is a curved surface). In
contrast, estimating the macroscale elastic modulus does
require an assumption of the element shape, which may be
partially responsible for macroscale elastic modulus esti-
mates not agreeing with literature values in previous work.
The scaling of elastic modulus values from the microscale
to the macroscale will be the subject of future work.
[74] The resulting microstructural and micromechanical

properties for different snow types are significantly different
and have very different trends, indicating that a snow
characterization may be possible from SMP signals using
these physically based estimates. Although this is beyond
the scope of this paper, it is hoped that the inversion
algorithm described here (code available from the authors
upon request) will help standardize processing of SMP
measurements. There are more than 15 SMP instruments
in use worldwide in the snow science community today,
therefore if the SMP analysis procedure can be standard-
ized, then results from different studies around the world
can be directly compared. This inversion algorithm will
hopefully form a solid foundation upon which a snow
characterization, as well as a method for scaling micro-
mechanical properties to scales of importance for engineer-
ing and avalanche forecasting, can be built upon in the
future. The code used to process the raw SMP data
presented in this paper can be downloaded at http://cgiss.
boisestate.edu/�hpm/software, or can be obtained by request
from the corresponding author (hpm@cgiss.boisestate.edu).

Notation

A cross-sectional area of SMP tip.
As cross-sectional area of structural element in plane

parallel to SMP tip.
d distance normal to SMP tip.
dz distance in vertical direction.

Emicro microscale elastic modulus.
f rupture force (mean) normal to tip.
fi ith individual rupture force normal to tip.
F force normal to SMP tip.

Fm mean total force normal to tip.
Fs SMP sample frequency.
Fz measured force, in vertical direction.
L structural element length.
N number of ruptures.
Na number of available elements.
Ne number of engaged elements.
Nm number of measured ruptures per mm.
Pc probability of contact.
r radius of SMP tip.
Ve volume of individual structural element.
VT total volume displaced during measurement.
z vertical distance during measurement.
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d deflection at rupture.
ef strain at failure.

Ddi distance from current peak to the ith next peak.
m coefficient of friction between ice and SMP tip.
q half angle of SMP tip.

smicro microscale strength.
smacro macroscale strength.
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