306 research outputs found

    Convergence of the state of a passive nonlinear plant with an L2 input

    Get PDF
    In this paper, we consider a strictly output passive nonlinear plant P with storage function H. We assume that P is zero-state detectable. Under some mild conditions on H, we show that the state x of the plant converges to zero for any L2 input. This implies the solvability for all t ≥ 0 of the system equations, for every input in L^2_{loc} We define a stability notion called L2 system-stable, a variant to the L2-stability concept, which has a nice interconnection properties

    Emission Line Variability of the Accreting Young Brown Dwarf 2MASSW J1207334-393254: From Hours to Years

    Full text link
    We have obtained a series of high-resolution optical spectra for the brown dwarf 2MASSW J1207334-393254 (2M1207) using the ESO Very Large Telescope with the UVES spectrograph during two consecutive observing nights (time resolution of ~12 min) and the Magellan Clay telescope with the MIKE spectrograph. Combined with previously published results, these data allow us to investigate changes in the emission line spectrum of 2M1207 on timescales of hours to years. Most of the emission line profiles of 2M1207 are broad, in particular that of Halpha, indicating that the dominant fraction of the emission must be attributed to disk accretion rather than to magnetic activity. From the Halpha 10% width we deduce a relatively stable accretion rate between 10^(-10.1...-9.8) Msun/yr for two nights of consecutive observations. Therefore, either the accretion stream is nearly homogeneous over (sub-)stellar longitude or the system is seen face-on. Small but significant variations are evident throughout our near-continuous observation, and they reach a maximum after ~8 h, roughly the timescale on which maximum variability is expected across the rotation cycle. Together with past measurements, we confirm that the accretion rate of 2M1207 varies by more than one order of magnitude on timescales of months to years. Such variable mass accretion yields a plausible explanation for the observed spread in the accretion rate vs. mass diagram. The magnetic field required to drive the funnel flow is on the order of a few hundred G. Despite the obvious presence of a magnetic field, no radio nor X-ray emission has been reported for 2M1207. Possibly strong accretion suppresses magnetic activity in brown dwarfs, similar to the findings for higher mass T Tauri stars.Comment: accepted for publication in Ap

    Discovery of a Wide Substellar Companion to a Nearby Low-Mass Star

    Full text link
    We report the discovery of a wide (135+/-25 AU), unusually blue L5 companion 2MASS J17114559+4028578 to the nearby M4.5 dwarf G 203-50 as a result of a targeted search for common proper motion pairs in the Sloan Digital Sky Survey and the Two Micron All Sky Survey. Adaptive Optics imaging with Subaru indicates that neither component is a nearly equal mass binary with separation > 0.18", and places limits on the existence of additional faint companions. An examination of TiO and CaH features in the primary's spectrum is consistent with solar metallicity and provides no evidence that G 203-50 is metal poor. We estimate an age for the primary of 1-5 Gyr based on activity. Assuming coevality of the companion, its age, gravity and metallicity can be constrained from properties of the primary, making it a suitable benchmark object for the calibration of evolutionary models and for determining the atmospheric properties of peculiar blue L dwarfs. The low total mass (M_tot=0.21+/-0.03 M_sun), intermediate mass ratio (q=0.45+/-0.14), and wide separation of this system demonstrate that the star formation process is capable of forming wide, weakly bound binary systems with low mass and BD components. Based on the sensitivity of our search we find that no more than 2.2% of early-to-mid M dwarfs (9.0 0.06 M_sun.Comment: 24 pages, 5 figures, accepted for publication in Ap

    A new Classical T Tauri object at the sub-stellar boundary in Chamaeleon II

    Full text link
    We have obtained low- and medium-resolution optical spectra of 20 candidate young low-mass stars and brown dwarfs in the nearby Chamaeleon II dark cloud, using the Magellan Baade telescope. We analyze these data in conjunction with near-infrared photometry from the 2-Micron All Sky Survey. We find that one target, [VCE2001] C41, exhibits broad H(alpha) emission as well as a variety of forbidden emission lines. These signatures are usually associated with accretion and outflow in young stars and brown dwarfs. Our spectra of C41 also reveal LiI in absorption and allow us to derive a spectral type of M5.5 for it. Therefore, we propose that C41 is a classical T Tauri object near the sub-stellar boundary. Thirteen other targets in our sample have continuum spectra without intrinsic absorption or emission features, and are difficult to characterize. They may be background giants or foreground field stars not associated with the cloud or embedded protostars, and need further investigation. The six remaining candidates, with moderate reddening, are likely to be older field dwarfs, given their spectral types, lack of lithium and H(alpha).Comment: Astrophysical Journal, accepted June 19, 200

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page

    A dust disk surrounding the young A star HR4796A

    Get PDF
    We report the codiscovery of the spatially-resolved dust disk of the Vega-like star HR 4796A. Images of the thermal dust emission at λ=18μ\lambda = 18 \mum show an elongated structure approximately 200 AU in diameter surrounding the central A0V star. The position angle of the disk, 30±1030^{\circ} \pm 10^{\circ}, is consistent to the position angle of the M companion star, 225225^{\circ}, suggesting that the disk-binary system is being seen nearly along its orbital plane. The surface brightness distribution of the disk is consistent with the presence of an inner disk hole of approximately 50 AU radius, as was originally suggested by Jura et al. on the basis of the infrared spectrum. HR 4796 is a unique system among the Vega-like or β\beta Pictoris stars in that the M star companion (a weak-emission T Tauri star) shows that the system is relatively young, 8±3\sim 8 \pm 3 Myr. The inner disk hole may provide evidence for coagulation of dust into larger bodies on a timescale similar to that suggested for planet formation in the solar system.Comment: 12 pages, 3 PostScript figures, accepted for publication in Astrophysical Journal Letter

    Spectroscopy of Very Low Mass Stars and Brown Dwarfs in the Lambda Orionis Star Forming Region

    Full text link
    Context. Most observational studies so far point towards brown dwarfs sharing a similar formation mechanism as the one accepted for low mass stars. However, larger databases and more systematic studies are needed before strong conclusions can be reached. Aims. In this second paper of a series devoted to the study of the spectroscopic properties of the members of the Lambda Orionis Star Forming Region, we study accretion, activity and rotation for a wide set of spectroscopically confirmed members of the central star cluster Collinder 69 to draw analogies and/or differences between the brown dwarf and stellar populations of this cluster. Moreover, we present comparisons with other star forming regions of similar and different ages to address environmental effects on our conclusions. Methods. We study prominent photospheric lines to derive rotational velocities and emission lines to distinguish between accretion processes and chromospheric activity. In addition, we include information about disk presence and X-ray emission. Results. We report very large differences in the disk fractions of low mass stars and brown dwarfs (~58%) when compared to higher mass stars (26+4-3%) with 0.6 Msun being the critical mass we find for this dichotomy. As a byproduct, we address the implications of the spatial distribution of disk and diskless members in the formation scenario of the cluster itself. We have used the Halpha emission to discriminate among accreting and non-accreting sources finding that 38+8-7% of sources harboring disks undergo active accretion and that his percentage stays similar in the substellar regime. For those sources we have estimated accretion rates. Finally, regarding rotational velocities, we find a high dispersion in vsin(i) which is even larger among the diskless population.Comment: Accepted for publication in A&A. 18 figs including the Appendix and an online tabl

    Herschel PACS and SPIRE Observations of TWA brown dwarf discs

    Get PDF
    We present Herschel SPIRE observations for the TW Hydrae association (TWA) brown dwarf discs SSSPM J1102-3431 (SS1102) and 2MASSW J1207334-393254 (2M1207). Both discs are undetected in the SPIRE 200-500mu bands. We have also analyzed the archival PACS data and find no detection for either source in the 160mu band. Based on radiative transfer modeling, we estimate an upper limit to the disc mass for both sources of 0.1 M_Jup. The lack of detection in the SPIRE bands could be due to a paucity of millimeter sized dust grains in the 2M1207 and SS1102 discs. We also report a non-detection for the brown dwarf 2MASS J1139511-315921 (2M1139) in the PACS 70 and 160mu bands. We have argued for the presence of a warm debris disc around 2M1139, based on an excess emission observed at 24mu. The mid-infrared colors for 2M1139 are similar to the transition discs in the Taurus and Ophuichus regions. A comparison of the brown dwarf disc masses over a ~1-10 Myr age interval suggests a decline in the disc mass with the age of the system.Comment: Accepted in A&

    Infall models of Class 0 protostars

    Full text link
    We have carried out radiative transfer calculations of infalling, dusty envelopes surrounding embedded protostars to understand the observed properties of the recently identified ``Class 0'' sources. To match the far-infrared peaks in the spectral energy distributions of objects such as the prototype Class 0 source VLA 1623, pure collapse models require mass infall rates \sim10^{-4}\msunyr1^{-1}. The radial intensity distributions predicted by such infall models are inconsistent with observations of VLA 1623 at sub-mm wavelengths, in agreement with the results of Andre et al. (1993) who found a density profile of ρr1/2\rho \propto r^{-1/2} rather than the expected ρr3/2\rho \propto r^{-3/2} gradient. To resolve this conflict, while still invoking infall to produce the outflow source at the center of VLA 1623, we suggest that the observed sub-mm intensity distribution is the sum of two components: an inner infall zone, plus an outer, more nearly constant-density region. This explanation of the observations requires that roughly half the total mass observed within 2000 AU radius of the source lies in a region external to the infall zone. The column densities for this external region are comparable to those found in the larger Oph A cloud within which VLA 1623 is embedded. The extreme environments of Class 0 sources lead us to suggest an alternative or additional interpretation of these objects: rather than simply concluding with Andre et al. that Class 0 objects only represent the earliest phases of protostellar collapse, and ultimately evolve into older ``Class I'' protostars, we suggest that many Class 0 sources could be the protostars of very dense regions. (Shortened)Comment: 22 pages, including 3 PostScript figures, accepted for publication in The Astrophysical Journa
    corecore