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Convergence of the state of a passive nonlinear plant with ah? input

Bayu Jayawardhana and George Weiss

Abstract—In this paper, we consider a strictly output passive made passive by state feedback. For affine nonlinear systems,
nonlinear plant P with storage function H. We assume that P Moylan [12] described necessary and sufficient conditions
is zero-state detectable. Under some mild conditions oH, we ¢4 ine system to be passive. The conditions are analogous
show that the statex of the plant converges to zero for anyl2 - ’ o . .
input. This implies the solvability for all t > 0 of the system Fo th? Kalman-Yakubovich-Popov Cor_]d_'t'ons for “near_ time-
equations, for every input in L2 . invariant systems. In Byrnest al [1], it is shown that if a

We define a stability notion calledL? system-stable, a variant nonlinear system has relative degree one and it is minimum
to the L2-stability concept, which has a nice interconnection phase, then the system can be rendered passive by state
properties. feedback.

|. INTRODUCTION Ba§ed on the_sg results, _passivity—bgsed controller design
exploits the stability properties of passive systems. Or&dga

. X . .
Passive systenm:av_e a¢’™ storage functio (defined on "1 31 gescribes several passivity-based controller design
the state spac®”) which has the intuitive meaning of stored \o1ho4s for electrical and mechanical systems modeled

energy. The input signal and the output signaltake values g jer.| agrange equations. The book [14] introduced
in the same inner product space. We denote the state ,Of tB&ssivity-based control for port-controlled Hamiltonian sys-
system at time by x(t). The defining property of a passive (o | ozancet al [11] describes control applications of
system is that if a state trajectory exists then dissipative systems theory. Jayawardhana [3] proposes a
dH(X) . controller design to reject input disturbance signals generated
IX X @ by an exosystem and to track constant reference signals.

The dynamics of many physical systems such as electricgP” @ fully actuated mechanical system, a passivity-based
circuits or mechanical systems can be described as passi{@Fking controller has been proposed by Slotine and Li [15]
systems, if one chooses properly the inpuand the output (see also [13] for the passivity property of the closed-loop

y. The product ofy and u should correspond to the poWersystem using thé&lotine-Licontroller). The combination of
flow into the system. the Slotine-Li controller with an internal model is explored

H < (y,u), where H=

It is known that passive systems have inherent stabilit§? OUr Paper [4]. _ _
properties. The Lyapunov stability of the equilibrium points !N this paper, we study the behavior of a strictly output
corresponding tou = 0 can be shown by usingl as a Passive nonlinear system given &R input signal. Under
Lyapunov function (see, for example, Willems [19]). Amild assumptions on the differential equation, we show that
stability property that some passive systems have 2s if the system is zero-state detectable and its storage function
stability, i.e., if the inputu is in L2 (for t > 0), then (for H is proper (these concepts are d_efi_ned_in Section II),_ then
any initial state) the equations of the system have a uniqiig® Statex converges to zero. This implies that a unique
solution (for allt > 0) and the outpuy is also inL? (see solution of the differential equation exists for al> 0, for

— . . . 2

van der Schaft [14] for detalils). any input signal in.j,..

It is shown in [14] thata strictly output passive system The 'intuition behind our mai.n I’eSL.I|.t is the following:
i.e., a passive system where the storage fundtosatisfies According to the global asymptotic stability result stated after
(2), whenu = 0 thenx(t) — 0. If ue L?, then for very large

H<(yu—Kklyl%, k>0 (2) 1 the energy left iru for t > T becomes negligible, and the

5 . 1 . . system behaves as it would foe=0, i.e., we have(t) — O.
has anL” gain < 3. Such a system is locally asymptotically owever, a rigorous proof of this result is not easy. Our proof
stable at O if it is zero-state detectable [14]. Moreover, i'f_| arng P Y- P

. . . . hni from infinite-dimensional m theory.
lim H(x) =0 (i.e.,H is proper) then the system is globallyuses tec NIQuUES Trom 1 te-dimensiona syste. theory
[[x]|—e0 The main result of this paper has been used in our paper
asymptotically stable at 0. [5] to solve an input disturbance rejection problem, where
Many references study the conditions under which a nonhe disturbance can be decomposed into a signal generated
linear system is passive, and when a nonlinear system canie an exosystem and drf signal. The technique used in
. . . . this paper can also be used for certain nonlinear systems to
This work is supported by the EPSRC, United Kingdom, under grant . . .
number GR/S61256/01. show the convergence of the state givenl&ninput signal,
The first author is with the Dept. Mathematical Sciences, University otvherep € [1,), see Jayawardhana [6].
Bath, Bath BA2 7AY. The second author is with the Control and Power The Ilnear VerS|on Of our ma|n result |S the fo”OW|ng For
Group, Dept. of Electrical and Electronic Engineering, Imperial College l . . . LTI P which is d bl
London, London SW7 2AZ, UKe-mail: bayujw@ieee.org, a linear time-invariant (LTI) systen® which is detectable

g.weiss@imperial.ac.uk and strictly output passive we hawgt) — 0, for everyL?



inputu. The proof of this is easy: suppose tiraits described Theorem 2.2:Assume thatu: R, — R™ is measurable,

by f € €(R"x R™R") and the following two conditions hold
x=Ax+Bu, y=Cx+Du, (3) foreveryacR™

(S1) There exists a constamt> 0 and a locally inte-

wherex(t) € R", u(t) e R™, y(t) € RP. From the detectability grable functiona : R, — R, such that

and the strict output passivity &, it follows thatP is stable.

Thus,u € L? implies thatx € L2. From (3), we also have that [ f(x,u(t)) — f(y,ut))] < a)|x—y]
x € L2. Using Barlilat's lemma (see Logemann and Ryan
[10]), it follows thatx(t) — O. for almost everyt € R, and for allx,y € a+ Be.
(S2) There exists a locally integrable functigh: R —
1. PRELIMINARIES R, such that for almost everyc R,
Notation. Throughout this paper, the inner product on any | f(au®)| <B().

Hilbert space is denoted Ry, -) andR_ = [0, ). We refer to N ) )
[8] and [14] for basic concepts on nonlinear systems and on Then for everyx(0) € R" there exists5 >0 and a unique
passivity theory. For a finite-dimensional veciomwe use the solution of (4) with inputu on [0,6).

1
norm||x|| = (3 [¥a|?) 2 and for matrices, we use the operator This theorem is an immediate consequence of Theorem
norm induced by|| - || (the largest singular value). For any 36 in [16]. We need this result in Section 3 when dealing
€ >0, we denoteB, = {x € R" | ||x|| < €}. For any finite- with anL? input signal.
dlmenS|0n§1I vector spagé/ endowed with a norm - H“’/.’ Corollary 2.3: Suppose that andf are as in Theorem 2.2
the space.“(R.,?") consists of all the measurable funCtlonsand for somex(0) € R™, [0, 8) (wheres > 0) is the maximal
f: Ry — 7 such thatfy’ || f(t)||2.dt < . The square-root of L

the last integral is denoted Wyf||, .. For f € L?(R,,7") and gg:vegoo;]eglcsttiz; gf]g:]e tizlglggi;fg(g'[‘g <5)°° sLhcehn tLoart
T > 0, we denote byfy the truncation off to [0,T]. The y P ' ’

spacelL? (R, 7) consists of all the measurable functionsX(T) £H.
f: R, — ¥ such thatfr € L>(R,, ), for all T > 0. The Proof: The property(S1) and (S2) in Theorem (2.2)
space#1(R.,7) consists of all the function§: R, — 7 implies also that for any compatt c R", there is a locally

such thatf, % cL?(R.,7) (where% is understood in the integrable functiony such that

sense of distributions). The spa@(R' RP) (respectively

¢1(R',RP)) consists of all the continuous (respectively con- IF O u®) < 7, @)
. . . . . I
tinuously differentiable) functions : R* — RP. for almost everyt € R, and for allx € 7. Indeed, given
Consider the time-invariant plaft described by anyac K, there exists > 0 and functiona and 8 as in the
X = f(xu), 4) Theorem 2.2. Thus,

y = h(), ®) IOl <If@+[fxt)—f@at)] <p(t)+calt),

where the statg, the inputu and the outpuy are functions of for all x € a+ B¢ and almost every € R,.. Denote the last
t >0, such thak(t) € R", u(t),y(t) € R™ m<n. We assume inequality above byya(t) = B(t) + co(t) which is locally
that f € €1(R" x R™ R") with f(0,u) =0« u=0 andhec integrable. Consider the open coveringtofby the sets of
#1(R",R™) with h(0) = 0. We assume that there exists athe formBg, +a;, aj € K, j = {1,2,...}. By compactness,
storage functiorH € 1(R",R,) such that for som& >0, the open covering has a finite subcovering, ijeis finite.
Choosey(t) = max {7, (t)}, theny satisfies (7) since; is
9H (%) 2 i ach
f(x,u) < (y,u) — K|yl (6) locally integrable for each.
Ix We prove the corollary by using contradiction. Suppose
The plantP as in (4)—-(5) with the storage functionl that there exists a compact $etC R" such thaix(t) € K for
satisfying (6) is strictly output passive, which means thall t € [0,1(x(0))). First, we show that lig, o)) X(t) exists.
it satisfies (2) (this is easy to verifyld is calledproperif  For the compact sdt, we know that there exists a locally
H(x) — o whenever||x|| — co. integrable functiony: R, — R such that (7) holds. Then
We recall a result on the existence and uniqueness of thee have

solution of the differential equation (4) (see also Sontag [16, te ti
Appendix C] for details). It =x(t)ll < [“IF(x(@).um) e < [,
] ]

Definition 2.1: A solution of4) with a measurable input
u on an interval# containingO is an absolutely continuous
functionx: .# — R" such that

wherety, tj € [0,1(x(0))). Since||x(tk) —X(tj)|| — O asty,t; —
1(x(0)). SinceK is a complete metric space, in (o)) X(t)
: exists andx(l(x(0))) € K. However, we could use again
_ Theorem 2.2 withl (x(0)) as the initial time and(l(x(0)))
t)—x(0)= [ f d e s
X(t) =x(0) /o (x(%), u(z))d © as the initial state to show the existence of solution of (4) on
the interval[l (x(0)),n), n > 1(x(0)). This shows thak(x(0))



is not the maximal interval of existence of the solution of (Al) For every compact set#” C R", there exist con-

(4).

If 1(x(0)) <« is as in Corollary 2.3, then it is calletthe
finite escape time

Let 2 be a metric space with distange A setG C 2~
is relatively compactif the closure of G is compact. Let
Z:Ry — 2. Apointé € 2 is said to be amw-limit point
of zif there exists a sequené¢t) in R, such that, — o and
Z(t,) — &. The set of all thew-limit points of z is denoted
by Q(2).

Amapr:R, x Z — 2 is said to be asemiflow onZ”
if 7 is continuoust(0,Xp) = X for all xp € 2" and

VsteR, VYxoe Z.

O

n(s+t,%) = n(s,n(t,%o))

A non-empty selG C £ is w-invariant if z(t,G) = G for
allteR;.

Proposition 2.4:Let 7 : R, x 2 — 2 be a semiflow on
a metric space?’. Let xg € 2" and denotez(t) = n(t,Xo).
If z(R;) is relatively compact, therQ)(z) is non-empty,
compact,t-invariant and
lim u(z(t),Q(z)) =0.

t—o0

(8)

stantscy, ¢, > 0 such that

1 (xa,u) = £ 0, U)|| < 1+ c2[ul]?) X2 = el
)
for all ue RM andxy,x € 7.
(A2) For each fixeda € R", there exist constants,c, >
0 such that

[f(a,u)] <cs+calluf®> VYueR™  (10)
Remark 3.1:It can be shown tha{Al) and (A2) are

satisfied for affine nonlinear systerRsdescribed by
x = f+gxu, (11)

where f € #1(R",R"), g € €X(R",R™™), g(0) has rankm
and h is as in (5). This class of systems includes also the
port-controlled Hamiltonian systems [14].

For anyt > 0, we denote by5: the left-shift operator by
7, acting onX = L2(R,,R™). The reason for this notation is
that, traditionally,S; denotes the right-shift by on X and
S; is the adjoint ofS;. By denotingdy = u andd; = Sfdp, it
follows thatd; L2(R+,Rm) for all t > 0 and the following

The proof is a straightforward extension from the result fopquation holds for almost evety> 0:

finite-dimensional systems whet& C R" (see, for example,

La Salle [9] or Logemann and Ryan [10]). This result will
be used for an infinite-dimensional system in Section 3. The

d d (©
Glaliz = 5 [ i@z =~ @3)

proof is given below to make the paper self-contained. We thaeorem 3.2:Let the plantP defined by (4), (5) be zero-

mention thatQ(z) is also connected.

Proof: Sincez(R. ) is relatively compactQ(z) is non-
empty and compact.

To prove m-invariance, také& € Q(z), so that there exists

a sequencéty) in R, such that, — o andz(t,) — &. Take
t > 0, then

7(t,€) = lim 7(t,2(tn)) = lim 7(t+tn,%0) € Q(2,

so thatz(t,Q(z)) C Q(z). To prove the opposite inclusion

(tn) with 7, — 0. The sequence(t, —t,xp) (defined forn

large enough, so that,—t > 0) being contained in a compact

set, has a convergent subsequen¢é,, xo), where (6,) is
a subsequence dft, —t). If we put & = limp_c 7(6n,X%o),
thenn(t,€) =n.

To prove (8), assume that (8) is false. Then there exis

a sequencét,) € R such that, — o and u(z(tn), Q(2)) >

€ > 0 for all n. This is a contradiction since for a subsequenc

(6n) of (ty), we havez(6,) — & € Q(2).

P is said to bezero-state detectablé the following is
true: If u(t) =0 andx is a solution of (4) orf0, ) such that
y(t) =0 for all't >0, thent limx(t) = 0.

O

1. MAIN RESULTS

We consider the systef described by (4) and (5), with
the mild assumptions of andg stated after (5).
We need additional assumptions on the functfon

’ n
taken € Q(z), so thatn = limp_.»2(7,) for some sequence S CR

state detectable and assu(#d)-(A2). Assume thaP has a
storage functiorH such thatH (x) > 0 for x # 0, H(0) =0,
H is proper and (6) (strict output passivity) holds.

Then for every initial conditiorx(0) € R" and for every
uc L?(R,,R™), the state trajectory of P is defined for all
t >0 and it satisfiex(t) — 0 ast — « (and hence/(t) — 0
ast — o).

Proof: Using (Al), we have that for every compact set
there exist constants,c; > 0 such that (9) holds.
By denotinge(t) = ¢ +Co||u(t)||? and sincau € L?(R, ,R™),

it is easy to see that is locally integrable and satisfies the
condition(S1) in Theorem 2.2.

Using the assumptiofA2), we have that for each fixeade
R" x R!, there exist constants, ¢ > 0 such that (10) holds.

denotingB (t) = c3+cal|u(t)||? and sinceu € L3 (R, R™),

is locally integrable and satisfies the conditi¢®2) in
gheorem 2.2 for the state equation (4).

Then usingx, B as above and using initial valx€0) € R",
it follows from Theorem 2.2 that there exisés> 0 and a
unique solution of (14) with inputi € L?(R,,R™) on .# =
[0,6). In particular,x is absolutely continuous as a function
oft on .7.

We define an infinite-dimensional signal generator for the
signal u. This signal generator has the state space-
L%(R,,R™) and the evolution of its state is governed by
the operator semigroufs; ) >o. Thus, the state of the signal
generator at time is d = Sf'dp, wheredp € X is the initial



state. The generator of this semigroup g = % with  then it follows from Corollary 2.3 thak(t) must leave any
domain 2(</) = #*(R,,R™). The observation operator compact set?” C R" at some finite timel < §. SinceHg
of this signal generator i§, defined for¢ € 2(«) by is absolutely continuous as a function bfand bounded
€9 = ¢(0). It can be checked that’ is admissible in the from below, (18) implies thak (z(t)) is bounded and non-
sense of Weiss [18]. We need the Lebesgue extensiafi, of increasing for allt € .#. In particular, the state(t) never

denoted by, defined by leaves the compact s¢k € R" | H(x) < Hg(z(0))} for all
1 e 1 e t € .#. This contradiction shows tha# = R, andHg(z(t))
%6 = lim %/ S'¢ dt = lim f/ 0(E) dE. has a limith ast — o,
e—=0 € .Jo e—0E& Jo

We will prove the relative compactness #fR_.). It has
with 7(41) being the set of alp € X for which the above been shown thak(t) is bounded for allt € R,, hence
limit exists. We refer to [18] for more information on the x(R.) is relatively compact inR". Since lim . ||t|| 2 =
concept of Lebesgue extension. The output function of thg, the mapping — d; is a continuous mapping from the
signal generator isi(t) = %_.d;, which is defined for almost compact interval0,] to L2(R, ,R™). (Here, [0,] is the
everyt > 0. It turns out thau = do (the generated signal is compactification o, .) The image of a compact set through

the initial state). a continuous mapping is always compact. Thus, the state
We define an extended systdmby connectingP to the trajectory of the signal generator together with its limit point
generator fordy as shown in Figure 1. Then we have 0 is a compact set im?(R,,R™), i.e., the set{d |t > 0}

is relatively compact inL?(R,,R™). Thereforez(R,) is

XO = T),ut), (14) relatively compact ifR" x X.

& = Sdo, (15) Let © denote the semiflow of (14)—(15) so that) =
uit) = %L, (16)  m(t,z0). According to Proposition 2.4 and the relative com-
yit) = h(xt)). (17) pactness ofz(R.), Q(2) is non-empty, compact and-

invariant.
Let z(t) = [Xéﬂ denote the state at time of the above For any& € Q(z), there is a sequend&,) in R, such that
system, so that(t) € Z = R" x X. th — o and z(t,) — &. By the continuity ofHg, Ha(§) =

limn e Hci(Z(tn)) = h. Therefore, He (z(t)) = h on Q(2).
SinceQ(2z) is m-invariant,Q(z) C E = {z| Hg (2) = 0}.
SG u P Yy Let M be the largest-invariant set contained i&. Since
Q(2) is m-invariant andQ(z) C E, we haveQ(z) C M.

In the invariant seM, H is constant along state trajec-
tories andy = 0 andu = 0 along such trajectories. By the
Eig. 1. _ The_extenc_ied closed-loop system._ The bl8€kis the infinite- assumptions of the theorer, is zero-state detectable, i.e.,
dimensional linear signal generator for thé signal u. if ut) =0 andy(t) = 0 for all t € R, thenx(t) — 0 as
t — . Also, if u(t) =0 for all t € R, thendy =0, so
that d, = O for all t € R;. Hence, in the invariant se¥l,
Hci(z) = He(0) = 0 for all ze M. SinceH(z) > 0 for all
z+# 0, we obtain thaM = {0}, henceQ(z) = {0}. Using (8)

Consider the storage functiod, : Z — R, defined for
z=[4] by Ha(2) = H(x) + 7/|d||? wherey > z, wherek > 0
is the constant from (6). We show thidg (z(t)) is absolutely
continuous as a function ¢f SinceH € ¥*(R",R) and the
solutionx of (14) is absolutely continuous as a functiontof 't folows that X(t) — 0 ast — co. L .
defined in., it follows thatH (x(t)) is absolutely continuous | "€ above argument Is valid for any initial stai@®) € R
on . From (13) and since € LZ(R,,R™), it follows that 2nd for anyu € L(R.,RT). -

2 1 m i i 2
g;‘lﬁ:ﬂb@ig ()(g%t.R ). This implies thacy; is absolutely Corollary 3.3: Let the plantP be as in TheorerB.2 Then

Using (6), (13), (14) — (16), we obtain that, for aImostfor e\geryx(O) ER_” there exists a unique solution of (4) with
ue L (R4, RM in Ry.

everyt € .¢, loc
. dH(x . -
Hy = ( )f(x, do(t)) — 7]l do()|2 Proof: To prove 'Fhe resqlt, we ;lse a c%ntradlctlon.
X Suppose that there exists an input Li, (R, R™) and a
< (Y, do(t)) — KlylI> = 7lldo(t)[|?, finite escape tim@ > 0 for the trajectory ok of the system
1 > 0 2 with initial conditionsx(0) = xg. According to Corollary 2.3,
= (% ~Vldo®)]"+ (E —KylI® ve>0. [IX(t)|| — o« ast — T. Then usingu"given by
By choosingf € (1/2y,2k), we obtain ut) vtelo,T]
: _ 2_ 2 (t)_{ 0 Vte(T,x),
Hei(2(t)) < —cs[u(t)||“ —cs[ly(t) [ <O, (18) 1),
wherecs = v— % >0 andcg =k— % > 0. the trajectoryxof the system withx(0) = xp and inputu™also

Let us prove thaty = R,. If the maximal interval of has the same finite escape timie This is a contradiction.
definition of a state trajectory is” = [0,8) with § < », Indeed, sincai Z L?(R,,R™), it follows from Theorem 3.2



that the state trajectory corresponding tai s bounded for for all t € (0,¢). This contradicts the existence of a solution
t € [0,), i.e., there is no finite escape time.

Note that the convergence of the state trajectoty zero
does not imply that € L?>(R,,R"). We give an example
where u € L>(R,R™) = y € L?(R,R™) with a unique
solution of the state(t) for allt € R, butx ¢ L2(R,,R").
Let the strictly output passive plaf be described by

wherex(t), u(t),y(t) € R. Using the storage functioH (x) =
%x“, it follows from Theorem 3.2 that for every €
L?(R,,R) and every initial statex(0) € R, there exists
a unique solutionx(t) of (19) in Ry and tiry\x(tﬂ =0.
However, this does not imply thatc L>(R,,R). Usingu=0
and initial statex(0) = a, the solutionx of (19) is given by

x=-x+u, y=x,

X(t) = <2t + a12> -

so thatx ¢ L?(R,R).

Consider the following single-input single-output pldht

wherep is a positive integer. This plaR is strictly output
passive. Indeed, using the storage functibfx) = %xz, we

have

From this inequality, it can be shown thBthas a finitel.2
gain of 1, i.e.,|lyr||.2 < |lur|l 2+ /2H(X(0)) (see Lemma

IV. SYSTEM STABILITY

X=X —x+u, y=x,

H = —x2u?®—x2+xu
< (yuy—|Iyl*

6.5 in [8] for details).

However, this does not imply that for eveme L2(R, ,R)
the solutionx(t) of (20) exists on some intervak [0, ) with

6 > 0. Indeed, considep > 2 and

so thatu € L?(R,). Now the state equation (20) can be

U(t) _ { t_ip fort e [071)7

0 for t € [1,00),

written as follows:

such thatx,

%= xtloxtt® vte[o1).

It can be shown that ik(0) # O then a solution of (22)
does not exist on any intervfd,d), whereé > 0. Without
loss of generality, assume thgD) < 0. Using contradiction,
suppose that there exists a solutionf (22) on[0,d) with
6 > 0. By the continuity ok on [0, §), there exist € [0, 8)
maxx(t) < 0. By Definition 2.1, the state

te[0,€)

trajectoryx satisfies

X(t)

>

x(0)+/0t [—(1‘1+1)x(r)+177719} dr

t t
x(0)+/ —(T’l+1)xgdf+/ T dr
0 0

0]

xon [0,9).
Note that ifx(0) = 0, then the solution of (22) exists on
R, and fort € (0,1] it is given by

x(t) = e-In®-v /t gln(z)+7) T*%pd@ (23)
Jo

(this can be verified directly).

It has been shown that the plaRtas in (20) with input
u as in (21) does not have a solution on any interval of
the type[0,8) when p > 2. It has a unique solution when
p =1 which can also be concluded from Theorem 3.2 since
it satisfies AssumptiogAl).

Now consider planP described by

—Xx+ sa(u) vx e [-1,1],

X = Xx—2+safu)  Vxe (1,0), (24)
X+2+safu) Vxe (—oo,—1),

y = X% (25)

wherex(t),u(t),y(t) € R, sat:R — R is a saturation function
defined by squ) = u for all ue (—1,1) and safu) = u/|u|
otherwise. For the planP as in (24), (25) and for every
initial condition x(0) € B4, it can be checked that evetye
L?(R,,R) implies the existence of a unique solution and
the corresponding outpyte L?(R,,R). But whenx(0) is
outside the balBs, i.e., x(0) € R\B3, uc L? % yc L? and
lim [[y(t)[] = eo.

The concept of.2-stability is originally defined for map-
ping, see, for example, Vidyasagar [17, Chapter 6.3] or
van der Schaft [14, Chapter 1.2]. Its generalization to state
equations often overlooks the influence of the initial state on
the output (for example in [17, Chapter 6.3]) or the existence
of solution of the state equation (for example in [14, Remark
3.1.4] orin [8, Lemma 6.5]). Example (20) wigh> 2 shows
that the system having a finite?-gain (in the sense of [14,
Definition 3.1.3]) does not imply.2-stability. Example (24)
shows that for every initial conditior(0) in a compact set,
every L2 input u implies the existence of a unique solution
to the system equations and the corresponding oytsiin
L2, but this property does not hold anymore when the initial
conditionx(0) is outside the set.

A good definition of L?-stability for state equations is
given in [14, Definition 1.2.11] but it omits the boundedness
of the state trajectories. This omission allows an LTI system
to be categorized as arf-stable system (in the sense of [14,
Definition 1.2.11]) but the state grows unbounded for by
input, for example, the plar® given by

X 1 1] |x 0 X
el =6 AL +[d]e v=ro u ) o
In this section, we want to refine again the concept of
L2-stability for dynamical systems which combines it
stability concept from van der Schaft [14] or Vidyasagar [17]
with the concept of system stability for linear systems as
defined in Curtain [2].

Definition 4.1: The plantP described by (4) i? system-
stable if for every ue L?(R,,R™) and x(0) € R", there



exists a unique solutior of (4) onR,, the state trajectory L? implies that there exists a global solutiarof the state
x is bounded and the output functigris in L2(R, ,R™). equationx € L® andy € L.

A cascade connection of two ISS retains the ISS property
of the interconnected systems. The same consequence also
applies to the cascade connection of two plants which.&re
system-stable. Let the plan®, i = 1,2, be given by

It follows that any plantP satisfying the assumptions in
Theorem 3.2 id.2 system-stable, while the pla® in (20)
with p > 2, the plantP in (24),(25) and the plar® in (26)
are notL? system-stable. Note that if a plaRtis L% system-
stable then it is alsh?-stable. % = fi(%, ), yi = hi(x) (28)

Proposition 4.2:Let the plantP be defined by (4) and wherex;(t) € R™ and u;(t),y;(t) € R™. Considerm; = mp
assumgAl1)-(A2). Assume thaP has a storage functiod  and Py, P, areL? system-stable and are cascade connected
such thatH (x) > 0 for x# 0, H(0) = 0, H is proper and® by u, = y;. Then the whole system with inpug, state[}}]
is strictly output passivei.e., and outputy, is L2 system-stable. Indeed, Hy? system-

. > stability of P1, anyu; € L2 implies the global solution ofy,
H < (y,u) —Kllyll @7 and we have € L® andy; € L?. Sinceu, =y; € L2, by L?
holds withk > 0. ThenP is L2 system-stable. system-stability oP,, there exists global solution o, and
_ ) 0 _ we havex, € L® andy, € L2.
Proof: Letuc L%(R,R™). Itfollows from the firstpart  1q feedback interconnection of ISS systems preserves the
of the prr]oof in Theorem 3.2 that for any initial conditions|gg property of the closed loop system provided that a small-
X(0) € R" that there exists a global solutionof (4) and the  gain type condition is satisfied (see Jiatg! [7] for details).

state trajectory is bounded. The feedback interconnection version fdr system-stable is
By the strict output passivity dP, we have given in the following proposition.

1 2
I¥lle < 7 lullz +4/ SHO(O)).
dl + u:]_ yl
Thusy e L?(R,R™). O P,
+
Corollary 4.3: Let the plantP be as in Proposition 4.2.
Then for everyx(0) € R" and for everyu € L? (R;,R™)
. . . +

there exists a global unique solution of (4). Y> Uz d,

P,

+

Remark 4.4:A passive system with a proper storage func-
tion and satisfying(S3){(S4), does not necessarily have a
global solution for every inputi € L?(R, ). Indeed, let the
plant P be given by

Fig. 2. The feedback interconnection of systems st&land P».

Proposition 5.1: Let the plantsP;, i = 1,2, be given by
(28) with my = mp. Suppose that for eadh= 1,2, f; assumes
where X(t)’u(t)7y(t) € R, Wlth the proper storage function (Al)'(AZ) andP; is L2 SyStem-Stab'e. Assume that for each

x=(1-x%u  y=x(1-x)?

H =12 Pis passive, sincél = (y,u). Note thatP satisfies | = 1.2, Pi has a finiteL>-gain denoted by. Suppose that
(A1)(A2) but it is not strictly output passive. Suppose thaP1 and P, are feedback interconnected as in Figure 2 such
the inputu is given by thatu; = d; +y, andu, = dy +y1 whered;, d, are external
2 vtelo1) signals. Ifp1y2 < 1 then the closed-loop system with input
_ - S dy Y171 2 _
u(t) _{ 0 elsewhere, [dz} and output[y;] is L= system-stable.
. d
so thatu € L?(R,) and consider the initial conditior(0) = Proof. FEt [dﬂ < LZ(R+val+m2)- The (?Iosed-loop
0.5. Then the solution of the differential equationxi¢) = systemL is given by the following state equation
_2 . . - . o .

1—(2—2t)~<, which is defined only o0, 1) andtIerfx(t) = i = f1.(xe, hp(X2) + dt) 29)
—0o, 0 Xo = fa(xg,h1(x1) +db).

Using (A1), we have that for every compact sét C
R™M*™2 there exist constants;,c, > 0 such that (9) holds
The motivation to studyt? system-stability is analogous for the closed-loop systerh. By denoting a(t) = c; +
to the study of Input—_to—State Stability (ISS). B_y defInItIOI’I,CZH [31(:)} and since gl} € L2(R,,R™+M) it is easy
for an ISS system with inputi and statex, any inputu € (O ]| L0 . 2
e . . to see thatr is locally integrable and satisfies the condition

L* implies that there exists a global solutiarof the state .
. ® , . (S1)in Theorem 2.2.
equation and € L. If we define an outpuy which depends : . )
! . w Using the assumptiofA2), we have that for each fixed
continuously on the state, then it follows thatu € L* = n n )
o L acRM x R", there exist constants,c, > 0 such that (10)
y € L®. In the same manner, drf system-stable with input

. d 2 .
u, statex and outputy has the property that any inpute  holds forL. By denotingB(t) :C3+C4H [dim H and since

V. SYSTEM-STABLE INTERCONNECTIONS



Eﬂ € L2(R,,R™*M) B is locally integrable and satisfies [14] A.J. van der Schaftl,-Gain and Passivity Techniques in Nonlinear

the condition(S2)in Theorem 2.2 for the state equation (29).[15]

It follows from Theorem 2.2 (with, B as above) that for
any initial value [ggg”

with input {gﬂ € L2(R,,R™) on .# = [0,8). In particular,
[%] is absolutely continuous o .

For any measurable functioh defined on.#, we denote [19]

by IIf ]2y = (JZ IIf(t)|[2dt)2. Using the finiteL? gain of
P1 and P in the interval time of definitions, we have

A

nlldi+yalli2) +B1
Rlld2+ Y1l 2(») + B2

where 1, B> € R. By simple algebraic manipulation, it can
be shown that

yallzery <
I¥2ll2(r) <

Vil < 1m,2(71||d1|||_2<y)+Y1}’2||d2|||_2(y>
+ﬁ1+}’1[32)
< 1 d d
IYValli2ry < T nrelldwll 2 + 22lld2ll 200

+yz/31+/32) |

Since {gﬂ € L2(Ry,RM+™) it implies that [J1] €
L2(.7,R™+M2) |t follows also that[(}] € L?(.#,RM+M2),
By the L2 system-stability oP; andP», x; andxy is bounded
on .#. Using Corollary 2.3 we conclude that the maximal
interval of definition of[}] is R. Hence the state trajectory
(%] is bounded orR; and [}3] € L2(R,RM+m2), O
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