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Convergence of the state of a passive nonlinear plant with anL2 input

Bayu Jayawardhana and George Weiss

Abstract— In this paper, we consider a strictly output passive
nonlinear plant P with storage function H. We assume that P
is zero-state detectable. Under some mild conditions onH, we
show that the statex of the plant converges to zero for anyL2

input. This implies the solvability for all t ≥ 0 of the system
equations, for every input in L2

loc.
We define a stability notion calledL2 system-stable, a variant

to the L2-stability concept, which has a nice interconnection
properties.

I. INTRODUCTION

Passive systemshave aC 1 storage functionH (defined on
the state spaceRn) which has the intuitive meaning of stored
energy. The input signalu and the output signaly take values
in the same inner product space. We denote the state of the
system at timet by x(t). The defining property of a passive
system is that if a state trajectory exists then

Ḣ ≤ 〈y,u〉, where Ḣ =
∂H(x)

∂x
ẋ. (1)

The dynamics of many physical systems such as electrical
circuits or mechanical systems can be described as passive
systems, if one chooses properly the inputu and the output
y. The product ofy and u should correspond to the power
flow into the system.

It is known that passive systems have inherent stability
properties. The Lyapunov stability of the equilibrium points
corresponding tou = 0 can be shown by usingH as a
Lyapunov function (see, for example, Willems [19]). A
stability property that some passive systems have isL2-
stability, i.e., if the inputu is in L2 (for t ≥ 0), then (for
any initial state) the equations of the system have a unique
solution (for all t ≥ 0) and the outputy is also inL2 (see
van der Schaft [14] for details).

It is shown in [14] thata strictly output passive system,
i.e., a passive system where the storage functionH satisfies

Ḣ ≤ 〈y,u〉−k‖y‖2, k > 0, (2)

has anL2 gain≤ 1
k . Such a system is locally asymptotically

stable at 0 if it is zero-state detectable [14]. Moreover, if
lim

‖x‖→∞
H(x) = ∞ (i.e.,H is proper) then the system is globally

asymptotically stable at 0.
Many references study the conditions under which a non-

linear system is passive, and when a nonlinear system can be
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made passive by state feedback. For affine nonlinear systems,
Moylan [12] described necessary and sufficient conditions
for the system to be passive. The conditions are analogous
to the Kalman-Yakubovich-Popov conditions for linear time-
invariant systems. In Byrneset al [1], it is shown that if a
nonlinear system has relative degree one and it is minimum
phase, then the system can be rendered passive by state
feedback.

Based on these results, passivity-based controller design
exploits the stability properties of passive systems. Ortegaet
al [13] describes several passivity-based controller design
methods for electrical and mechanical systems modeled
by Euler-Lagrange equations. The book [14] introduced
passivity-based control for port-controlled Hamiltonian sys-
tems. Lozanoet al [11] describes control applications of
dissipative systems theory. Jayawardhana [3] proposes a
controller design to reject input disturbance signals generated
by an exosystem and to track constant reference signals.
For a fully actuated mechanical system, a passivity-based
tracking controller has been proposed by Slotine and Li [15]
(see also [13] for the passivity property of the closed-loop
system using theSlotine-Li controller). The combination of
the Slotine-Li controller with an internal model is explored
in our paper [4].

In this paper, we study the behavior of a strictly output
passive nonlinear system given anL2 input signal. Under
mild assumptions on the differential equation, we show that
if the system is zero-state detectable and its storage function
H is proper (these concepts are defined in Section II), then
the statex converges to zero. This implies that a unique
solution of the differential equation exists for allt ≥ 0, for
any input signal inL2

loc.
The intuition behind our main result is the following:

According to the global asymptotic stability result stated after
(2), whenu = 0 thenx(t)→ 0. If u∈ L2, then for very large
τ the energy left inu for t ≥ τ becomes negligible, and the
system behaves as it would foru= 0, i.e., we havex(t)→ 0.
However, a rigorous proof of this result is not easy. Our proof
uses techniques from infinite-dimensional system theory.

The main result of this paper has been used in our paper
[5] to solve an input disturbance rejection problem, where
the disturbance can be decomposed into a signal generated
by an exosystem and anL2 signal. The technique used in
this paper can also be used for certain nonlinear systems to
show the convergence of the state given anLp input signal,
where p∈ [1,∞), see Jayawardhana [6].

The linear version of our main result is the following: For
a linear time-invariant (LTI) systemP which is detectable
and strictly output passive we havex(t) → 0, for everyL2



input u. The proof of this is easy: suppose thatP is described
by

ẋ = Ax+Bu, y = Cx+Du, (3)

wherex(t)∈Rn, u(t)∈Rm, y(t)∈Rp. From the detectability
and the strict output passivity ofP, it follows thatP is stable.
Thus,u∈ L2 implies thatx∈ L2. From (3), we also have that
ẋ ∈ L2. Using Barb̆alat’s lemma (see Logemann and Ryan
[10]), it follows that x(t)→ 0.

II. PRELIMINARIES

Notation. Throughout this paper, the inner product on any
Hilbert space is denoted by〈·, ·〉 andR+ = [0,∞). We refer to
[8] and [14] for basic concepts on nonlinear systems and on
passivity theory. For a finite-dimensional vectorx, we use the

norm‖x‖=
(
∑n |xn|2

) 1
2 and for matrices, we use the operator

norm induced by‖ · ‖ (the largest singular value). For any
ε ≥ 0, we denoteBε = {x∈ Rn | ‖x‖ ≤ ε}. For any finite-
dimensional vector spaceV endowed with a norm‖ · ‖V ,
the spaceL2(R+,V ) consists of all the measurable functions
f : R+ → V such that

∫ ∞
0 ‖ f (t)‖2

V dt < ∞. The square-root of
the last integral is denoted by‖ f‖L2. For f ∈ L2 (R+,V ) and
T > 0, we denote byfT the truncation off to [0,T]. The
spaceL2

loc(R+,V ) consists of all the measurable functions
f : R+ → V such that fT ∈ L2(R+,V ), for all T > 0. The
spaceH 1(R+,V ) consists of all the functionsf : R+ → V
such thatf , d f

dt ∈ L2(R+,V ) (where d f
dt is understood in the

sense of distributions). The spaceC (Rl ,Rp) (respectively
C 1(Rl ,Rp)) consists of all the continuous (respectively con-
tinuously differentiable) functionsf : Rl → Rp.

Consider the time-invariant plantP described by

ẋ = f (x,u), (4)

y = h(x), (5)

where the statex, the inputu and the outputy are functions of
t ≥ 0, such thatx(t)∈Rn, u(t),y(t)∈Rm,m≤ n. We assume
that f ∈ C 1(Rn×Rm,Rn) with f (0,u) = 0⇔ u = 0 andh∈
C 1(Rn,Rm) with h(0) = 0. We assume that there exists a
storage functionH ∈ C 1(Rn,R+) such that for somek > 0,

∂H(x)
∂x

f (x,u)≤ 〈y,u〉−k‖y‖2. (6)

The plant P as in (4)–(5) with the storage functionH
satisfying (6) is strictly output passive, which means that
it satisfies (2) (this is easy to verify).H is calledproper if
H(x)→ ∞ whenever‖x‖→ ∞.

We recall a result on the existence and uniqueness of the
solution of the differential equation (4) (see also Sontag [16,
Appendix C] for details).

Definition 2.1: A solution of(4) with a measurable input
u on an intervalI containing0 is an absolutely continuous
function x : I → Rn such that

x(t)−x(0) =
∫ t

0
f (x(τ),u(τ))dτ ∀t ∈I .

Theorem 2.2:Assume thatu : R+ → Rm is measurable,
f ∈ C (Rn×Rm,Rn) and the following two conditions hold
for everya∈ Rn:

(S1) There exists a constantc > 0 and a locally inte-
grable functionα : R+ → R+ such that

‖ f (x,u(t))− f (y,u(t))‖ ≤ α(t)‖x−y‖

for almost everyt ∈ R+ and for allx,y∈ a+Bc.
(S2) There exists a locally integrable functionβ : R+ →

R+ such that for almost everyt ∈ R+,

‖ f (a,u(t)‖ ≤ β (t).

Then for everyx(0) ∈Rn there existsδ > 0 and a unique
solution of (4) with inputu on [0,δ ).

This theorem is an immediate consequence of Theorem
36 in [16]. We need this result in Section 3 when dealing
with an L2 input signal.

Corollary 2.3: Suppose thatu and f are as in Theorem 2.2
and for somex(0)∈Rn, [0,δ ) (whereδ > 0) is the maximal
interval of existence of the solution of (4). Ifδ < ∞ then for
every compact setK ⊂Rn, there existsT ∈ [0,δ ) such that
x(T) /∈K .

Proof: The property(S1) and (S2) in Theorem (2.2)
implies also that for any compactK ⊂Rn, there is a locally
integrable functionγ such that

‖ f (x,u(t))‖ ≤ γ(t), (7)

for almost everyt ∈ R+ and for all x ∈ K . Indeed, given
any a∈ K, there existsc> 0 and functionα andβ as in the
Theorem 2.2. Thus,

‖ f (x, t)‖ ≤ ‖ f (a, t)‖+‖ f (x, t)− f (a, t)‖ ≤ β (t)+cα(t),

for all x∈ a+Bc and almost everyt ∈ R+. Denote the last
inequality above byγa(t) = β (t) + cα(t) which is locally
integrable. Consider the open covering ofK by the sets of
the form Bc j + a j , a j ∈ K, j = {1,2, . . .}. By compactness,
the open covering has a finite subcovering, i.e.,j is finite.
Chooseγ(t) = maxj{γa j (t)}, then γ satisfies (7) sinceγ j is
locally integrable for eachj.

We prove the corollary by using contradiction. Suppose
that there exists a compact setK ⊂Rn such thatx(t)∈K for
all t ∈ [0, I(x(0))). First, we show that limt→I(x(0)) x(t) exists.
For the compact setK, we know that there exists a locally
integrable functionγ : R+ → R+ such that (7) holds. Then
we have

‖x(tk)−x(t j)‖ ≤
∫ tk

t j

‖ f (x(τ),u(τ)‖dτ ≤
∫ tk

t j

γ(t),

wheretk, t j ∈ [0, I(x(0))). Since‖x(tk)−x(t j)‖→ 0 astk, t j →
I(x(0)). SinceK is a complete metric space, limt→I(x(0)) x(t)
exists andx(I(x(0))) ∈ K. However, we could use again
Theorem 2.2 withI(x(0)) as the initial time andx(I(x(0)))
as the initial state to show the existence of solution of (4) on
the interval[I(x(0)),η), η > I(x(0)). This shows thatI(x(0))



is not the maximal interval of existence of the solution of
(4).

If I(x(0)) < ∞ is as in Corollary 2.3, then it is calledthe
finite escape time.

Let X be a metric space with distanceµ. A set G⊂X
is relatively compactif the closure ofG is compact. Let
z : R+ →X . A point ξ ∈X is said to be anω-limit point
of z if there exists a sequence(tn) in R+ such thattn→∞ and
z(tn)→ ξ . The set of all theω-limit points of z is denoted
by Ω(z).

A map π : R+×X →X is said to be asemiflow onX
if π is continuous,π(0,x0) = x0 for all x0 ∈X and

π(s+ t,x0) = π(s,π(t,x0)) ∀s, t ∈ R+ ∀x0 ∈X .

A non-empty setG⊂ X is π-invariant if π(t,G) = G for
all t ∈ R+.

Proposition 2.4:Let π : R+×X →X be a semiflow on
a metric spaceX . Let x0 ∈ X and denotez(t) = π(t,x0).
If z(R+) is relatively compact, thenΩ(z) is non-empty,
compact,π-invariant and

lim
t→∞

µ(z(t),Ω(z)) = 0. (8)

The proof is a straightforward extension from the result for
finite-dimensional systems whereX ⊂Rn (see, for example,
La Salle [9] or Logemann and Ryan [10]). This result will
be used for an infinite-dimensional system in Section 3. The
proof is given below to make the paper self-contained. We
mention thatΩ(z) is also connected.

Proof: Sincez(R+) is relatively compact,Ω(z) is non-
empty and compact.

To proveπ-invariance, takeξ ∈Ω(z), so that there exists
a sequence(tn) in R+ such thattn →∞ andz(tn)→ ξ . Take
t > 0, then

π(t,ξ ) = lim
n→∞

π(t,z(tn)) = lim
n→∞

π(t + tn,x0) ∈ Ω(z),

so thatπ(t,Ω(z)) ⊂ Ω(z). To prove the opposite inclusion,
take η ∈ Ω(z), so thatη = limn→∞ z(τn) for some sequence
(τn) with τn → ∞. The sequenceπ(τn− t,x0) (defined forn
large enough, so thatτn−t > 0) being contained in a compact
set, has a convergent subsequenceπ(θn,x0), where(θn) is
a subsequence of(τn− t). If we put ξ = limn→∞ π(θn,x0),
thenπ(t,ξ ) = η .

To prove (8), assume that (8) is false. Then there exists
a sequence(tn) ∈R+ such thattn → ∞ and µ(z(tn),Ω(z))≥
ε > 0 for all n. This is a contradiction since for a subsequence
(θn) of (tn), we havez(θn)→ ξ ∈ Ω(z).

P is said to bezero-state detectableif the following is
true: If u(t) = 0 andx is a solution of (4) on[0,∞) such that
y(t) = 0 for all t ≥ 0, then lim

t→∞
x(t) = 0.

III. MAIN RESULTS

We consider the systemP described by (4) and (5), with
the mild assumptions onf andg stated after (5).

We need additional assumptions on the functionf :

(A1) For every compact setK ⊂ Rn, there exist con-
stantsc1,c2 > 0 such that

‖ f (x1,u)− f (x2,u)‖ ≤ (c1 +c2‖u‖2)‖x1−x2‖,
(9)

for all u∈ Rm andx1,x2 ∈K .
(A2) For each fixeda∈Rn, there exist constantsc3,c4 >

0 such that

‖ f (a,u)‖ ≤ c3 +c4‖u‖2 ∀u∈ Rm. (10)

Remark 3.1:It can be shown that(A1) and (A2) are
satisfied for affine nonlinear systemsP described by

ẋ = f̃ (x)+g(x)u, (11)

y = h(x), (12)

where f̃ ∈ C 1(Rn,Rn), g∈ C 1(Rn,Rn×m), g(0) has rankm
and h is as in (5). This class of systems includes also the
port-controlled Hamiltonian systems [14].

For anyτ ≥ 0, we denote byS∗τ the left-shift operator by
τ, acting onX = L2(R+,Rm). The reason for this notation is
that, traditionally,Sτ denotes the right-shift byτ on X and
S∗τ is the adjoint ofSτ . By denotingd0 = u anddt = S∗t d0, it
follows thatdt ∈ L2(R+,Rm) for all t ≥ 0 and the following
equation holds for almost everyt ≥ 0:

d
dt
‖dt‖2

L2 =
d
dt

∫ ∞

t
||d0(ξ )||2dξ =−||d0(t)||2. (13)

Theorem 3.2:Let the plantP defined by (4), (5) be zero-
state detectable and assume(A1)-(A2). Assume thatP has a
storage functionH such thatH(x) > 0 for x 6= 0, H(0) = 0,
H is proper and (6) (strict output passivity) holds.

Then for every initial conditionx(0) ∈ Rn and for every
u∈ L2(R+,Rm), the state trajectoryx of P is defined for all
t ≥ 0 and it satisfiesx(t)→ 0 ast → ∞ (and hencey(t)→ 0
as t → ∞).

Proof: Using (A1), we have that for every compact set
K ⊂Rn there exist constantsc1,c2 > 0 such that (9) holds.
By denotingα(t) = c1+c2‖u(t)‖2 and sinceu∈ L2(R+,Rm),
it is easy to see thatα is locally integrable and satisfies the
condition (S1) in Theorem 2.2.

Using the assumption(A2), we have that for each fixeda∈
Rn×Rl , there exist constantsc3,c4 > 0 such that (10) holds.
By denotingβ (t) = c3+c4‖u(t)‖2 and sinceu∈ L2(R+,Rm),
β is locally integrable and satisfies the condition(S2) in
Theorem 2.2 for the state equation (4).

Then usingα,β as above and using initial valuex(0)∈Rn,
it follows from Theorem 2.2 that there existsδ > 0 and a
unique solution of (14) with inputu∈ L2(R+,Rm) on I =
[0,δ ). In particular,x is absolutely continuous as a function
of t on I .

We define an infinite-dimensional signal generator for the
signal u. This signal generator has the state spaceX =
L2(R+,Rm) and the evolution of its state is governed by
the operator semigroup(S∗τ)τ≥0. Thus, the state of the signal
generator at timet is dt = S∗t d0, whered0 ∈ X is the initial



state. The generator of this semigroup isA = d
dξ

with

domain D(A ) = H 1(R+,Rm). The observation operator
of this signal generator isC , defined for φ ∈ D(A ) by
C φ = φ(0). It can be checked thatC is admissible in the
sense of Weiss [18]. We need the Lebesgue extension ofC ,
denoted byCL, defined by

CLφ = lim
ε→0

C
1
ε

∫
ε

0
S∗t φ dt = lim

ε→0

1
ε

∫
ε

0
φ(ξ ) dξ .

with D(CL) being the set of allφ ∈ X for which the above
limit exists. We refer to [18] for more information on the
concept of Lebesgue extension. The output function of the
signal generator isu(t) = CLdt , which is defined for almost
every t ≥ 0. It turns out thatu = d0 (the generated signal is
the initial state).

We define an extended systemL by connectingP to the
generator ford0 as shown in Figure 1. Then we have

ẋ(t) = f (x(t),u(t)) , (14)

dt = S∗t d0, (15)

u(t) = CLdt , (16)

y(t) = h(x(t)). (17)

Let z(t) =
[

x(t)
dt

]
denote the state at timet of the above

system, so thatz(t) ∈ Z = Rn×X.

SG - P -
u y

Fig. 1. The extended closed-loop system. The blockSG is the infinite-
dimensional linear signal generator for theL2 signalu.

Consider the storage functionHcl : Z → R+ defined for
z= [ x

d ] by Hcl(z) = H(x)+γ‖d‖2 whereγ > 1
4k , wherek > 0

is the constant from (6). We show thatHcl(z(t)) is absolutely
continuous as a function oft. SinceH ∈C 1(Rn,R+) and the
solutionx of (14) is absolutely continuous as a function oft
defined inI , it follows thatH(x(t)) is absolutely continuous
on I . From (13) and sinced0 ∈ L2(R+,Rm), it follows that
d
dt ‖dt‖2

L2 ∈ L1(R+,Rm). This implies that‖dt‖2
L2 is absolutely

continuous onR+.
Using (6), (13), (14) – (16), we obtain that, for almost

every t ∈I ,

Ḣcl =
∂H(x)

∂x
f (x,d0(t))− γ‖d0(t)‖2

≤ 〈y,d0(t)〉−k‖y‖2− γ‖d0(t)‖2,

≤ (
1

2θ
− γ)‖d0(t)‖2 +(

θ

2
−k)‖y‖2 ∀θ > 0.

By choosingθ ∈ (1/2γ,2k), we obtain

Ḣcl(z(t))≤−c5‖u(t)‖2−c6‖y(t)‖2 ≤ 0, (18)

wherec5 = γ − 1
2θ

> 0 andc6 = k− θ

2 > 0.
Let us prove thatI = R+. If the maximal interval of

definition of a state trajectory isI = [0,δ ) with δ < ∞,

then it follows from Corollary 2.3 thatx(t) must leave any
compact setK ⊂ Rn at some finite timeT < δ . SinceHcl

is absolutely continuous as a function oft and bounded
from below, (18) implies thatHcl(z(t)) is bounded and non-
increasing for allt ∈ I . In particular, the statex(t) never
leaves the compact set{x ∈ Rn | H(x) ≤ Hcl(z(0))} for all
t ∈I . This contradiction shows thatI = R+ andHcl(z(t))
has a limith as t → ∞.

We will prove the relative compactness ofz(R+). It has
been shown thatx(t) is bounded for allt ∈ R+, hence
x(R+) is relatively compact inRn. Since limt→∞ ‖dt‖L2 =
0, the mappingt 7→ dt is a continuous mapping from the
compact interval[0,∞] to L2(R+,Rm). (Here, [0,∞] is the
compactification ofR+.) The image of a compact set through
a continuous mapping is always compact. Thus, the state
trajectory of the signal generator together with its limit point
0 is a compact set inL2(R+,Rm), i.e., the set{dt | t ≥ 0}
is relatively compact inL2(R+,Rm). Thereforez(R+) is
relatively compact inRn×X.

Let π denote the semiflow of (14)–(15) so thatz(t) =
π(t,z0). According to Proposition 2.4 and the relative com-
pactness ofz(R+), Ω(z) is non-empty, compact andπ-
invariant.

For anyξ ∈Ω(z), there is a sequence(tn) in R+ such that
tn → ∞ and z(tn) → ξ . By the continuity ofHcl , Hcl(ξ ) =
limn→∞ Hcl(z(tn)) = h. Therefore,Hcl(z(t)) = h on Ω(z).
SinceΩ(z) is π-invariant,Ω(z)⊂ E = {z | Ḣcl(z) = 0}.

Let M be the largestπ-invariant set contained inE. Since
Ω(z) is π-invariant andΩ(z)⊂ E, we haveΩ(z)⊂M.

In the invariant setM, Hcl is constant along state trajec-
tories andy = 0 and u = 0 along such trajectories. By the
assumptions of the theorem,P is zero-state detectable, i.e.,
if u(t) = 0 and y(t) = 0 for all t ∈ R+ then x(t) → 0 as
t → ∞. Also, if u(t) = 0 for all t ∈ R+ then d0 = 0, so
that dt = 0 for all t ∈ R+. Hence, in the invariant setM,
Hcl(z) = Hcl(0) = 0 for all z∈ M. SinceHcl(z) > 0 for all
z 6= 0, we obtain thatM = {0}, henceΩ(z) = {0}. Using (8)
it follows that x(t)→ 0 ast → ∞.

The above argument is valid for any initial statex(0)∈Rn

and for anyu∈ L2(R+,Rm).

Corollary 3.3: Let the plantP be as in Theorem3.2. Then
for everyx(0)∈Rn there exists a unique solution of (4) with
u∈ L2

loc(R+,Rm) in R+.

Proof: To prove the result, we use a contradiction.
Suppose that there exists an inputu ∈ L2

loc(R+,Rm) and a
finite escape timeT > 0 for the trajectory ofx of the system
with initial conditionsx(0) = x0. According to Corollary 2.3,
‖x(t)‖→ ∞ as t → T. Then using ˜u given by

ũ(t) =
{

u(t) ∀t ∈ [0,T],
0 ∀t ∈ (T,∞),

the trajectory ˜x of the system with ˜x(0) = x0 and input ˜u also
has the same finite escape timeT. This is a contradiction.
Indeed, since ˜u∈ L2(R+,Rm), it follows from Theorem 3.2



that the state trajectory ˜x corresponding to ˜u is bounded for
t ∈ [0,∞), i.e., there is no finite escape time.

Note that the convergence of the state trajectoryx to zero
does not imply thatx ∈ L2(R+,Rn). We give an example
where u ∈ L2(R+,Rm) ⇒ y ∈ L2(R+,Rm) with a unique
solution of the statex(t) for all t ∈R+, but x /∈ L2(R+,Rn).
Let the strictly output passive plantP be described by

ẋ =−x3 +u, y = x3, (19)

wherex(t),u(t),y(t)∈R. Using the storage functionH(x) =
1
4x4, it follows from Theorem 3.2 that for everyu ∈
L2(R+,R) and every initial statex(0) ∈ R, there exists
a unique solutionx(t) of (19) in R+ and lim

t→∞
|x(t)| = 0.

However, this does not imply thatx∈ L2(R+,R). Usingu= 0
and initial statex(0) = a, the solutionx of (19) is given by

x(t) =
(

2t +
1
a2

)−0.5

,

so thatx /∈ L2(R+,R).

IV. SYSTEM STABILITY

Consider the following single-input single-output plantP

ẋ =−xu2p−x+u, y = x, (20)

where p is a positive integer. This plantP is strictly output
passive. Indeed, using the storage functionH(x) = 1

2x2, we
have

Ḣ = −x2u2p−x2 +xu

≤ 〈y,u〉−‖y‖2.

From this inequality, it can be shown thatP has a finiteL2

gain of 1, i.e.,‖yT‖L2 ≤ ‖uT‖L2 +
√

2H(x(0)) (see Lemma
6.5 in [8] for details).

However, this does not imply that for everyu∈ L2(R+,R)
the solutionx(t) of (20) exists on some intervalt ∈ [0,δ ) with
δ > 0. Indeed, considerp≥ 2 and

u(t) =

{
t−

1
2p for t ∈ [0,1),

0 for t ∈ [1,∞),
(21)

so that u ∈ L2(R+). Now the state equation (20) can be
written as follows:

ẋ =−xt−1−x+ t−
1

2p ∀ t ∈ [0,1). (22)

It can be shown that ifx(0) 6= 0 then a solution of (22)
does not exist on any interval[0,δ ), whereδ > 0. Without
loss of generality, assume thatx(0) < 0. Using contradiction,
suppose that there exists a solutionx of (22) on [0,δ ) with
δ > 0. By the continuity ofx on [0,δ ), there existsε ∈ [0,δ )
such thatxε = max

t∈[0,ε)
x(t) < 0. By Definition 2.1, the state

trajectoryx satisfies

x(t) = x(0)+
∫ t

0

[
−(τ−1 +1)x(τ)+ τ

− 1
2p

]
dτ

> x(0)+
∫ t

0
−(τ−1 +1)xε dτ +

∫ t

0
τ
− 1

2p dτ

= ∞

for all t ∈ (0,ε). This contradicts the existence of a solution
x on [0,δ ).

Note that if x(0) = 0, then the solution of (22) exists on
R+ and for t ∈ (0,1] it is given by

x(t) = e(− ln(t)−t)
∫ t

0
e(ln(τ)+τ)

τ
− 1

2p dτ, (23)

(this can be verified directly).
It has been shown that the plantP as in (20) with input

u as in (21) does not have a solution on any interval of
the type[0,δ ) when p≥ 2. It has a unique solution when
p = 1 which can also be concluded from Theorem 3.2 since
it satisfies Assumption(A1).

Now consider plantP described by

ẋ =

 −x+sat(u) ∀x∈ [−1,1],
x−2+sat(u) ∀x∈ (1,∞),
x+2+sat(u) ∀x∈ (−∞,−1),

(24)

y = x, (25)

wherex(t),u(t),y(t)∈R, sat :R→R is a saturation function
defined by sat(u) = u for all u∈ (−1,1) and sat(u) = u/|u|
otherwise. For the plantP as in (24), (25) and for every
initial condition x(0) ∈ B1, it can be checked that everyu∈
L2(R+,R) implies the existence of a unique solution and
the corresponding outputy ∈ L2(R+,R). But whenx(0) is
outside the ballB3, i.e., x(0) ∈ R\B3, u∈ L2 ; y∈ L2 and
lim
t→∞

‖y(t)‖= ∞.

The concept ofL2-stability is originally defined for map-
ping, see, for example, Vidyasagar [17, Chapter 6.3] or
van der Schaft [14, Chapter 1.2]. Its generalization to state
equations often overlooks the influence of the initial state on
the output (for example in [17, Chapter 6.3]) or the existence
of solution of the state equation (for example in [14, Remark
3.1.4] or in [8, Lemma 6.5]). Example (20) withp≥ 2 shows
that the system having a finiteL2-gain (in the sense of [14,
Definition 3.1.3]) does not implyL2-stability. Example (24)
shows that for every initial conditionx(0) in a compact set,
every L2 input u implies the existence of a unique solution
to the system equations and the corresponding outputy is in
L2, but this property does not hold anymore when the initial
conditionx(0) is outside the set.

A good definition of L2-stability for state equations is
given in [14, Definition 1.2.11] but it omits the boundedness
of the state trajectories. This omission allows an LTI system
to be categorized as anL2-stable system (in the sense of [14,
Definition 1.2.11]) but the state grows unbounded for anyL2

input, for example, the plantP given by[
ẋ1

ẋ2

]
=

[
1 1
0 −1

][
x1

x2

]
+

[
0
1

]
u, y =

[
0 1

][
x1

x2

]
. (26)

In this section, we want to refine again the concept of
L2-stability for dynamical systems which combines theL2-
stability concept from van der Schaft [14] or Vidyasagar [17]
with the concept of system stability for linear systems as
defined in Curtain [2].

Definition 4.1: The plantP described by (4) isL2 system-
stable if for every u ∈ L2(R+,Rm) and x(0) ∈ Rn, there



exists a unique solutionx of (4) on R+, the state trajectory
x is bounded and the output functiony is in L2(R+,Rm).

It follows that any plantP satisfying the assumptions in
Theorem 3.2 isL2 system-stable, while the plantP in (20)
with p≥ 2, the plantP in (24),(25) and the plantP in (26)
are notL2 system-stable. Note that if a plantP is L2 system-
stable then it is alsoL2-stable.

Proposition 4.2:Let the plantP be defined by (4) and
assume(A1)-(A2). Assume thatP has a storage functionH
such thatH(x) > 0 for x 6= 0, H(0) = 0, H is proper andP
is strictly output passive, i.e.,

Ḣ ≤ 〈y,u〉−k‖y‖2 (27)

holds withk > 0. ThenP is L2 system-stable.

Proof: Let u∈ L2(R+,Rm). It follows from the first part
of the proof in Theorem 3.2 that for any initial conditions
x(0) ∈Rn that there exists a global solutionx of (4) and the
state trajectoryx is bounded.

By the strict output passivity ofP, we have

‖y‖L2 ≤
1
k
‖u‖L2 +

√
2
k

H(x(0)).

Thusy∈ L2(R+,Rm).

Corollary 4.3: Let the plantP be as in Proposition 4.2.
Then for everyx(0) ∈ Rn and for everyu ∈ L2

loc(R+,Rm)
there exists a global unique solution of (4).

Remark 4.4:A passive system with a proper storage func-
tion and satisfying(S3)–(S4), does not necessarily have a
global solution for every inputu∈ L2(R+). Indeed, let the
plant P be given by

ẋ = (1−x)2u y= x(1−x)2,

where x(t),u(t),y(t) ∈ R, with the proper storage function
H = 1

2x2. P is passive, sincėH = 〈y,u〉. Note thatP satisfies
(A1)–(A2) but it is not strictly output passive. Suppose that
the inputu is given by

u(t) =
{
−2 ∀t ∈ [0,1)
0 elsewhere,

so thatu∈ L2(R+) and consider the initial conditionx(0) =
0.5. Then the solution of the differential equation isx(t) =
1−(2−2t)−2, which is defined only on[0,1) and lim

t→1
x(t) =

−∞. 2

V. SYSTEM-STABLE INTERCONNECTIONS

The motivation to studyL2 system-stability is analogous
to the study of Input-to-State Stability (ISS). By definition,
for an ISS system with inputu and statex, any inputu ∈
L∞ implies that there exists a global solutionx of the state
equation andx∈ L∞. If we define an outputy which depends
continuously on the statex, then it follows thatu ∈ L∞ ⇒
y∈ L∞. In the same manner, anL2 system-stable with input
u, statex and outputy has the property that any inputu∈

L2 implies that there exists a global solutionx of the state
equation,x∈ L∞ andy∈ L2.

A cascade connection of two ISS retains the ISS property
of the interconnected systems. The same consequence also
applies to the cascade connection of two plants which areL2

system-stable. Let the plantsPi , i = 1,2, be given by

ẋi = fi(xi ,ui), yi = hi(xi) (28)

where xi(t) ∈ Rni and ui(t),yi(t) ∈ Rmi . Considerm1 = m2

and P1, P2 are L2 system-stable and are cascade connected
by u2 = y1. Then the whole system with inputu1, state[x1

x2 ]
and outputy2 is L2 system-stable. Indeed, byL2 system-
stability of P1, anyu1 ∈ L2 implies the global solution ofx1,
and we havex1 ∈ L∞ andy1 ∈ L2. Sinceu2 = y1 ∈ L2, by L2

system-stability ofP2, there exists global solution ofx2, and
we havex2 ∈ L∞ andy2 ∈ L2.

The feedback interconnection of ISS systems preserves the
ISS property of the closed loop system provided that a small-
gain type condition is satisfied (see Jianget al [7] for details).
The feedback interconnection version forL2 system-stable is
given in the following proposition.

6+

h-
+

- P1

?
+

+
h��P2

d1 u1 y1

y2 u2 d2

Fig. 2. The feedback interconnection of systems stableP1 andP2.

Proposition 5.1:Let the plantsPi , i = 1,2, be given by
(28) with m1 = m2. Suppose that for eachi = 1,2, fi assumes
(A1)-(A2) andPi is L2 system-stable. Assume that for each
i = 1,2, Pi has a finiteL2-gain denoted byγi . Suppose that
P1 and P2 are feedback interconnected as in Figure 2 such
that u1 = d1 +y2 andu2 = d2 +y1 whered1,d2 are external
signals. If γ1γ2 < 1 then the closed-loop system with input[

d1
d2

]
and output[y1

y2 ] is L2 system-stable.

Proof: Let
[

d1
d2

]
∈ L2(R+,Rm1+m2). The closed-loop

systemL is given by the following state equation

ẋ1 = f1(x1,h2(x2)+d1)
ẋ2 = f2(x1,h1(x1)+d2).

(29)

Using (A1), we have that for every compact setB ⊂
Rn1+n2 there exist constantsc1,c2 > 0 such that (9) holds
for the closed-loop systemL . By denoting α(t) = c1 +

c2

∥∥∥[
d1(t)
d2(t)

]∥∥∥2
and since

[
d1
d2

]
∈ L2(R+,Rm1+m2), it is easy

to see thatα is locally integrable and satisfies the condition
(S1) in Theorem 2.2.

Using the assumption(A2), we have that for each fixed
a∈Rn1×Rn2, there exist constantsc3,c4 > 0 such that (10)

holds forL . By denotingβ (t) = c3+c4

∥∥∥[
d1(t)
d2(t)

]∥∥∥2
and since



[
d1
d2

]
∈ L2(R+,Rm1+m2), β is locally integrable and satisfies

the condition(S2) in Theorem 2.2 for the state equation (29).
It follows from Theorem 2.2 (withα,β as above) that for

any initial value
[

x1(0)
x2(0)

]
∈Rn1×Rn2, there exists a maximal

interval time of definitionδ > 0 and a unique solution of (29)
with input

[
d1
d2

]
∈ L2(R+,Rm) on I = [0,δ ). In particular,

[x1
x2 ] is absolutely continuous onI .

For any measurable functionf defined onI , we denote
by ‖ f‖L2(I ) = (

∫
δ

0 ‖ f (t)‖2dt)
1
2 . Using the finiteL2 gain of

P1 andP2 in the interval time of definitionI , we have

‖y1‖L2(I ) ≤ γ1‖d1 +y2‖L2(I ) +β1

‖y2‖L2(I ) ≤ γ2‖d2 +y1‖L2(I ) +β2

whereβ1,β2 ∈ R. By simple algebraic manipulation, it can
be shown that

‖y1‖L2(I ) ≤ 1
1− γ1γ2

(
γ1‖d1‖L2(I ) + γ1γ2‖d2‖L2(I )

+β1 + γ1β2

)
‖y2‖L2(I ) ≤ 1

1− γ1γ2

(
γ1γ2‖d1‖L2(I ) + γ2‖d2‖L2(I )

+ γ2β1 +β2

)
.

Since
[

d1
d2

]
∈ L2(R+,Rm1+m2), it implies that [y1

y2 ] ∈
L2(I ,Rm1+m2). It follows also that[u1

u2 ] ∈ L2(I ,Rm1+m2).
By theL2 system-stability ofP1 andP2, x1 andx2 is bounded
on I . Using Corollary 2.3 we conclude that the maximal
interval of definition of[x1

x2 ] is R+. Hence the state trajectory
[x1
x2 ] is bounded onR+ and [y1

y2 ] ∈ L2(R+,Rm1+m2).
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