13 research outputs found
Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea
: In the wake of the recent outbreak of Ebola virus disease (EVD) in several African countries, the World Health Organization prioritized the evaluation of treatment with convalescent plasma derived from patients who have recovered from the disease. We evaluated the safety and efficacy of convalescent plasma for the treatment of EVD in Guinea. : In this nonrandomized, comparative study, 99 patients of various ages (including pregnant women) with confirmed EVD received two consecutive transfusions of 200 to 250 ml of ABO-compatible convalescent plasma, with each unit of plasma obtained from a separate convalescent donor. The transfusions were initiated on the day of diagnosis or up to 2 days later. The level of neutralizing antibodies against Ebola virus in the plasma was unknown at the time of administration. The control group was 418 patients who had been treated at the same center during the previous 5 months. The primary outcome was the risk of death during the period from 3 to 16 days after diagnosis with adjustments for age and the baseline cycle-threshold value on polymerase-chain-reaction assay; patients who had died before day 3 were excluded. The clinically important difference was defined as an absolute reduction in mortality of 20 percentage points in the convalescent-plasma group as compared with the control group. : A total of 84 patients who were treated with plasma were included in the primary analysis. At baseline, the convalescent-plasma group had slightly higher cycle-threshold values and a shorter duration of symptoms than did the control group, along with a higher frequency of eye redness and difficulty in swallowing. From day 3 to day 16 after diagnosis, the risk of death was 31% in the convalescent-plasma group and 38% in the control group (risk difference, -7 percentage points; 95% confidence interval [CI], -18 to 4). The difference was reduced after adjustment for age and cycle-threshold value (adjusted risk difference, -3 percentage points; 95% CI, -13 to 8). No serious adverse reactions associated with the use of convalescent plasma were observed. : The transfusion of up to 500 ml of convalescent plasma with unknown levels of neutralizing antibodies in 84 patients with confirmed EVD was not associated with a significant improvement in survival. (Funded by the European Union's Horizon 2020 Research and Innovation Program and others; ClinicalTrials.gov number, NCT02342171.).<br/
A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa
Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures
A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa
Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures
Social Network and Health Researchers and Professionals Mobility in Africa: Lessons Learned from AFRICA BUILD Project
Promote mobility between South-South and South-North for improving level of researchers, staff and students through a platform
Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo: Emergence of O5-negative Salmonella Typhimurium and extensive drug resistance.
BackgroundNon-typhoidal Salmonella (NTS) are a major cause of bloodstream infection (BSI) in sub-Saharan Africa. This study aimed to assess its longitudinal evolution as cause of BSI, its serotype distribution and its antibiotic resistance pattern in Kisantu, DR Congo.MethodsAs part of a national surveillance network, blood cultures were sampled in patients with suspected BSI admitted to Kisantu referral hospital from 2015-2017. Blood cultures were worked-up according to international standards. Results were compared to similar data from 2007 onwards.ResultsIn 2015-2017, NTS (n = 896) represented the primary cause of BSI. NTS were isolated from 7.6% of 11,764 suspected and 65.4% of 1371 confirmed BSI. In children ConclusionAs in previous surveillance periods, NTS ranked first as the cause of BSI in children. The emergence of O5-negative Salmonella Typhimurium needs to be considered in the light of vaccine development. The high proportions of antibiotic resistance are worrisome
Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo: Emergence of O5-negative Salmonella Typhimurium and extensive drug resistance
BackgroundNon-typhoidal Salmonella (NTS) are a major cause of bloodstream infection (BSI) in sub-Saharan Africa. This study aimed to assess its longitudinal evolution as cause of BSI, its serotype distribution and its antibiotic resistance pattern in Kisantu, DR Congo.MethodsAs part of a national surveillance network, blood cultures were sampled in patients with suspected BSI admitted to Kisantu referral hospital from 2015-2017. Blood cultures were worked-up according to international standards. Results were compared to similar data from 2007 onwards.ResultsIn 2015-2017, NTS (n = 896) represented the primary cause of BSI. NTS were isolated from 7.6% of 11,764 suspected and 65.4% of 1371 confirmed BSI. In children ConclusionAs in previous surveillance periods, NTS ranked first as the cause of BSI in children. The emergence of O5-negative Salmonella Typhimurium needs to be considered in the light of vaccine development. The high proportions of antibiotic resistance are worrisome
Antibiotic use prior to seeking medical care in patients with persistent fever: a cross-sectional study in four low- and middle-income countries
Community-level antibiotic use contributes to antimicrobial resistance, but is rarely monitored as part of efforts to optimize antibiotic use in low- and middle-income countries (LMICs). We investigated antibiotic use in the 4Â weeks before study inclusion for persistent fever
Healthcare seeking outside healthcare facilities and antibiotic dispensing patterns in rural Burkina Faso: A mixed methods study.
OBJECTIVE: Optimising antibiotic use is important to limit increasing antibiotic resistance. In rural Burkina Faso, over-the-counter dispensing of antibiotics in community pharmacies and non-licensed medicine retail outlets facilitates self-medication. We investigated its extent, reasons and dispensing patterns. METHODS: In an exploratory mixed-method design conducted between October 2020 and December 2021, this study first explored illness perceptions, the range of healthcare providers in communities, antibiotics knowledge and reasons for seeking healthcare outside healthcare facilities. Second, frequencies of illness and healthcare utilisation in the last 3 months were quantitatively measured. RESULTS: Participants distinguished between natural and magico-religious illnesses, according to origins. For illnesses considered to be 'natural', healthcare was mainly sought at healthcare facilities, private pharmacies and informal drug outlets. For illnesses considered as magico-religious, traditional healers were mainly visited. Antibiotics were perceived in the community as medicines similar to painkillers. Healthcare-seeking outside healthcare facilities was reported by 660/1973 (33.5%) participants reporting symptoms, including 315 (47.7%) to informal vendors. Healthcare seeking outside facilities was less common for 0-4-year-olds (58/534, 10.9% vs. 379/850, 44.1% for ≥5-year-olds) and decreased with improving socio-economic status (108/237, 45.6% in the lowest quintile; 96/418, 23.0% in the highest). Reported reasons included financial limitation, and also proximity to informal drug vendors, long waiting times at healthcare facilities, and health professionals' non-empathetic attitudes towards their patients. CONCLUSION: This study highlights the need to facilitate and promote access to healthcare facilities through universal health insurance and patient-centred care including reducing patients' waiting time. Furthermore, community-level antibiotic stewardship programmes should include community pharmacies and informal vendors
Use of WATCH antibiotics prior to presentation to the hospital in rural Burkina Faso
BACKGROUND: In low- and middle-income countries, the prevalence of antimicrobial resistance (AMR) is increasing. To control AMR, WHO recommends monitoring antibiotic use, in particular Watch antibiotics. These are critically important antibiotics, with restricted use because at risk of becoming ineffective due to increasing AMR. We investigated pre-hospital antibiotic use in rural Burkina Faso. METHODS: During 2016–2017, we collected data from patients aged > 3 months presenting with severe acute fever to the rural hospital of Nanoro Health District, Burkina Faso, including antibiotic use in the two weeks prior to consultation or hospitalization. We analysed reported antibiotic use by applying the WHO Access, Watch, Reserve classification. RESULTS: Of 920 febrile participants (63.0% ≤ 14 years), pre-hospital antibiotic use was reported by 363 (39.5%).Among these 363, microbiological diagnoses were available for 275 (75.8%) patients, of whom 162 (58.9%) were non-bacterial infections. Use of more than one antibiotic was reported by 58/363 (16.0%) participants. Of 491 selfreferred patients who did not previously visit a primary health care center, 131 (26.7%) reported antibiotic use. Of 424 antibiotics reported, 265 (62.5%) were Access and 159 (37.5%) Watch antibiotics. Watch antibiotic use was more frequent among patients > 14 year olds (51.1%) compared to those 0–14 year old (30.7%, p < 0.001) and among referrals from the primary health care centers (42.2%) compared to self-referred patients (28.1%, p = 0.004). Most frequently reported Watch antibiotics were ceftriaxone (114, 71.7%) and ciprofloxacin (32, 20.1%). CONCLUSION: The reported frequent use of Watch group antibiotics among febrile patients prior to presentation to the hospital in rural Burkina Faso highlights the need to develop targeted interventions to improve antibiotic use in community settings as part of strengthening antibiotic stewardship in low- and middle-income countries. This should include facilitating referral, access to qualified prescribers and diagnostic tools in rural primary health care centers. Trial registration ClinicalTrials.gov identifier: NCT02669823. Registration date was February 1, 2016
Recommended from our members
A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa
Acknowledgements: We are grateful to Jacqueline Keane, Christoph Puethe and the Pathogen Informatics team (Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom) for the support. The work by S.V.P. and G.D. is funded in part by a grant from the Bill & Melinda Gates Foundation (OPP1151153). R.K. and M.B. were supported by research grants BB/N007964/1 and BB/M025489/1, and by the BBSRC Institute Strategic Programme Microbes in the Food Chain BB/R012504/1 and its constituent projects BBS/E/F/000PR10348 and BBS/E/F/000PR10349. W.L.C. was supported by the Research Foundation—Flanders (FWO SB PhD fellowship 1S40018N); J.P.R. was financially supported by the Belgian Directorate General for Development Cooperation (DGD). M.A.B. and N.R.T. were supported by Wellcome funding to the Sanger Institute (#206194). The work done in Benin, Burkina Faso and DRC by B.B., L.M.-K., M.-F.P., D.F., D.A., J.J. and O.L. was funded by the Belgian Directorate of Development Cooperation (DGD) through the Multi-Year Programme (2012–2016) between the Belgian DGD and the Institute of Tropical Medicine, Belgium and (for DRC) by the Baillet-Latour find and the Flemish Interuniversity Council (VLIR-UOS). The isolates from Malawi were generated by Malawi Liverpool Wellcome Research Programme bacteraemia service, supported by Asia and Africa Programme Grant 206545/Z/17/Z to NF. The work in The Gambia was supported by the Bill & Melinda Gates Foundation (OPP1020327); GAVI The Vaccine Alliance’s Accelerated Development and Introduction Plan (PneumoADIP), Medical Research Council (UK) to GM. Salmonella isolates obtained through the RTS,S study was funded by the Bill & Melinda Gates Foundation to CAM. Salmonella isolates obtained through the TSAP study were funded by the Bill & Melinda Gates Foundation to IVI (OPPGH5231) to F.M., H.J.J. and S.E.P. This research by S.V.P., S.S. and G.D. was funded by the National Institute for Health Research [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust]. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. This research was funded in whole, or in part, by the Wellcome Trust (#206194).Funder: DH | National Institute for Health Research (NIHR); doi: https://doi.org/10.13039/501100000272Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures