390 research outputs found
Estudio mineralógico de algunas calcedonias argentinas
El trabajo se realizó teniendo en cuenta la reacción de este mineral con el cemento portland, la cuál produce efectos perjudiciales en los hormigones. Se comprobó que en ciertos casos la reacción no se produce. Se investigan las causas de tal comportamiento. El material utilizado para el estudio proviene de los rÃos Uruguay y Paraná, ya que son las principales fuentes de abastecimiento de agregados del Gran Buenos Aires.
Las "calcedonias" estudiadas están compuestas por un agregado fino de cuarzo, calcedonia y ópalo. La proporción relativa de dichos minerales condiciona la reactividad de los mismos.This paper deals with the reaction between chalcedony and Portland cement. This reaction damages the structure of the reinforced concrete, when aggregates of this kind are used for that purpose.
In certain cases the concerned reaction do not take place. For that reason a detailed study was carried out to determine the behavior of the materials. The aggregates used for this, study come from Paraná and Uruguay rivers; the sediments of this area supply enough material from the Gran Buenos Aires market.
The so call "chalcedony" studies are mainly composed of fine quartz, chalcedony and opal. The relative amounts of these minerals are thought to affect the behavior of the aggregates when they are mixed with portland cement
Comparison of the Spherical Averaged Pseudopotential Model with the Stabilized Jellium Model
We compare Kohn-Sham results (density, cohesive energy, size and effect of
charging) of the Spherical Averaged Pseudopotential Model with the Stabilized
Jellium Model for clusters of sodium and aluminum with less than 20 atoms. We
find that the Stabilized Jellium Model, although conceptually and practically
more simple, gives better results for the cohesive energy and the elastic
stiffness. We use the Local Density Approximation as well as the Generalized
Gradient Approximation to the exchange and correlation energies.Comment: 13 pages, latex, 8 figures, compressed postscript version available
at http://www.fis.uc.pt/~vieir
A Monte Carlo study of Inverse Symmetry Breaking
We make a Monte Carlo study of the coupled two-scalar
model in four dimensions at finite temperature. We
find no trace of Inverse Symmetry Breaking for values of the renormalized
parameters for which perturbation theory predicts this phenomenon.Comment: 4 pages, revtex, 3 figures include
Phase Transition of XY Model in Heptagonal Lattice
We numerically investigate the nature of the phase transition of the XY model
in the heptagonal lattice with the negative curvature, in comparison to other
interaction structures such as a flat two-dimensional (2D) square lattice and a
small-world network. Although the heptagonal lattice has a very short
characteristic path length like the small-world network structure, it is
revealed via calculation of the Binder's cumulant that the former exhibits a
zero-temperature phase transition while the latter has the finite-temperature
transition of the mean-field nature. Through the computation of the vortex
density as well as the correlation function in the low-temperature
approximation, we show that the absence of the phase transition originates from
the strong spinwave-type fluctuation, which is discussed in relation to the
usual 2D XY model.Comment: 5 pages, 6 figures, to be published in Europhys. Let
Size-frequency relation of earthquakes in load-transfer models of fracture
International audienceUsing Monte Carlo simulations of the process of breaking in arrays of elements with load-transfer rules, we have obtained the size- frequency relation of the avalanches occurring in 1- and 2-dimensional stochastic fracture models. The resulting power-law behaviour resembles the Gutenberg-Richter law for the relation between the size (liberated energy) of earthquakes and their number frequency. The value of the power law exponent is calculated as a function of the degree of stress dissipation present in the model. The degree of dissipation is implemented in a straightforward and simple way by assuming that only a fraction of the stress is transferred in each breaking event. The models are robust with respect to the degree of dissipation and we observe a consistent power-law behaviour for a broad range of dissipation values, both in ID and 2D. The value of the power-law exponent is similar to the phenomenological b- value (0.8 b 1.1) for intermediate magnitude earthquakes
On the Phase Structure of the 3D Edwards Anderson Spin Glass
We characterize numerically the properties of the phase transition of the
three dimensional Ising spin glass with Gaussian couplings and of the low
temperature phase. We compute critical exponents on large lattices. We study in
detail the overlap probability distribution and the equilibrium overlap-overlap
correlation functions. We find a clear agreement with off-equilibrium results
from previous work. These results strongly support the existence of a
continuous spontaneous replica symmetry breaking in three dimensional spin
glasses.Comment: 30 pages and 17 figures. Final version to be published in PR
Ontogeny of synaptophysin and synaptoporin in the central nervous system
The expression of the synaptic vesicle antigens synaptophysin (SY) and synaptoporin (SO) was studied in the rat striatum, which contains a nearly homogeneous population of GABAergic neurons. In situ hybridization revealed high levels of SY transcripts in the striatal anlage from embryonic day (E) 14 until birth. In contrast. SO hybridization signals were low, and no immunoreactive cell bodies were detected at these stages of development. At E 14, SY-immunoreactivity was restricted to perikarya. In later prenatal stages of development SY-immunoreactivity appeared in puncta (identified as terminals containing immunostained synaptic vesicles), fibers, thick fiber bundles and ‘patches’. In postnatal and adult animals, perikarya of striatal neurons exhibited immunoreaction for SO; ultrastructurally SO antigen was found in the Golgi apparatus and in multivesicular bodies. SO-positive boutons were rare in the striatum. In the neuropil, numerous presynaptic terminals positive for SY were observed. Our data indicate that the expression of synaptic vesicle proteins in GABAergic neurons of the striatum is developmentally regulated. Whereas SY is prevalent during embryonic development, SO is the major synaptic vesicle antigen expressed postnatally by striatal neurons which project to the globus pallidus and the substantia nigra. In contrast synapses of striatal afferents (predominantly from cortex, thalamus and substantia nigra) contain SY
Matching microscopic and macroscopic responses in glasses
We first reproduce on the Janus and Janus II computers a milestone experiment
that measures the spin-glass coherence length through the lowering of
free-energy barriers induced by the Zeeman effect. Secondly we determine the
scaling behavior that allows a quantitative analysis of a new experiment
reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett.
118, 157203 (2017)]. The value of the coherence length estimated through the
analysis of microscopic correlation functions turns out to be quantitatively
consistent with its measurement through macroscopic response functions.
Further, non-linear susceptibilities, recently measured in glass-forming
liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure
The Mpemba effect in spin glasses is a persistent memory effect
The Mpemba effect occurs when a hot system cools faster than an initially
colder one, when both are refrigerated in the same thermal reservoir. Using the
custom built supercomputer Janus II, we study the Mpemba effect in spin glasses
and show that it is a non-equilibrium process, governed by the coherence length
\xi of the system. The effect occurs when the bath temperature lies in the
glassy phase, but it is not necessary for the thermal protocol to cross the
critical temperature. In fact, the Mpemba effect follows from a strong
relationship between the internal energy and \xi that turns out to be a
sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents
itself as an intriguing new avenue for the experimental study of the coherence
length in supercooled liquids and other glass formers.Comment: Version accepted for publication in PNAS. 6 pages, 7 figure
Small Window Overlaps Are Effective Probes of Replica Symmetry Breaking in 3D Spin Glasses
We compute numerically small window overlaps in the three dimensional Edwards
Anderson spin glass. We show that they behave in the way implied by the Replica
Symmetry Breaking Ansatz, that they do not qualitatively differ from the full
volume overlap and do not tend to a trivial function when increasing the
lattice volume. On the contrary we show they are affected by small finite
volume effects, and are interesting tools for the study of the features of the
spin glass phase.Comment: 9 pages plus 5 figure
- …