275 research outputs found
Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}
We report neutron scattering measurements of the structure and magnetism of
stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single
crystal sample demonstrate that the excess oxygen dopants form a
three-dimensional ordered superlattice within the interstitial regions of the
crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast
rate of cooling can freeze-in the disordered-oxygen state. Hence, by
controlling the cooling rate, the degree of dopant disorder in our
La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched
disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same
time, the quenched disorder enhances the spin density wave order in a manner
analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR
Atomic-scale images of charge ordering in a mixed-valence manganite
Transition-metal perovskite oxides exhibit a wide range of extraordinary but
imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of
freedom all undergo order-disorder transitions in regimes not far from where
the best-known of these phenomena, namely high-temperature superconductivity of
the copper oxides, and the 'colossal' magnetoresistance of the manganese
oxides, occur. Mostly diffraction techniques, sensitive either to the spin or
the ionic core, have been used to measure the order. Unfortunately, because
they are only weakly sensitive to valence electrons and yield superposition of
signals from distinct mesoscopic phases, they cannot directly image mesoscopic
phase coexistence and charge ordering, two key features of the manganites. Here
we describe the first experiment to image charge ordering and phase separation
in real space with atomic-scale resolution in a transition metal oxide. Our
scanning tunneling microscopy (STM) data show that charge order is correlated
with structural order, as well as with whether the material is locally metallic
or insulating, thus giving an atomic-scale basis for descriptions of the
manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference
Inherent Inhomogeneities in Tunneling Spectra of BSCCO Crystals in the Superconducting State
Scanning Tunneling Spectroscopy on cleaved BSCCO(2212) single crystals reveal
inhomogeneities on length-scales of 30 . While most of the surface
yields spectra consistent with a d-wave superconductor, small regions show a
doubly gapped structure with both gaps lacking coherence peaks and the larger
gap having a size typical of the respective pseudo-gap for the same sample.Comment: 4 pages, 4 figure
The origin of the anomalously strong influence of out-of-plane disorder on high-Tc superconductivity
The electronic structure of Bi2Sr2-xRxCuOy(R=La, Eu) near the (pi,0) point of
the first Brillouin zone was studied by means of angle-resolved photoemission
spectroscopy (ARPES). The temperature T* above which the pseudogap structure in
the ARPES spectrum disappears was found to have an R dependence that is
opposite to that ofthe superconducting transition temperature Tc. This
indicates that the pseudogap state is competing with high-Tc superconductivity,
and the large Tc suppression observed with increasing the out-of-plane disorder
is due to the stabilization of the pseudogap state.Comment: 4 pages, 4 figure
Nanoscale Phenomenology from Visualizing Pair Formation Experiment
Recently, Gomes et al. [1] have visualized the gap formation in nanoscale
regions (NRs) above the critical temperature T_c in the high-T_c superconductor
Bi_2Sr_2CaCu_2O_{8+\delta}. It has been found that, as the temperature lowers,
the NRs expand in the bulk superconducting state consisted of inhomogeneities.
The fact that the size of the inhomogeneity [2] is close to the minimal size of
the NR [1] leads to a conclusion that the superconducting phase is a result of
these overlapped NRs. In the present paper we perform the charge and
percolation regime analysis of NRs and show that at the first critical doping
x_{c1}, when the superconductivity starts on, each NR carries the positive
electric charge one in units of electron charge, thus we attribute the NR to a
single hole boson, and the percolation lines connecting these bosons emerge. At
the second critical doping x_{c2}, when the superconductivity disappears, our
analysis demonstrates that the charge of each NR equals two. The origin of
x_{c2} can be understood by introducing additional normal phase hole fermions
in NRs, whose concentration appearing above x_{c1} increases smoothly with the
doping and breaks the percolation lines of bosons at x_{c2}. The last one
results in disappearing the bulk bosonic property of the pseudogap (PG) region,
which explains the upper bound for existence of vortices in Nernst effect [3].
Since [1] has demonstrated the absence of NRs at the PG boundary one can
conclude that along this boundary, as well as in x_{c2}, all bosons disappear.Comment: 4 pages, 1 figure. Good quality figure one can find in published
journal paper. Added 4 new references. Section of arXiv: 1010.043
Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}
The magnetic phase diagram of EuFe(AsP) was
investigated by means of magnetization and muon-spin rotation studies as a
function of chemical (isovalent substitution of As by P) and hydrostatic
pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe
spins with respect to P content and hydrostatic pressure are determined and
discussed. The present investigations reveal that the magnetic coupling between
the Eu and the Fe sublattices strongly depends on chemical and hydrostatic
pressure. It is found that chemical and hydrostatic pressure have a similar
effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure
Giant phonon anomalies and central peak due to charge density wave formation in YBaCuO
The electron-phonon interaction is a major factor influencing the competition
between collective instabilities in correlated-electron materials, but its role
in driving high-temperature superconductivity in the cuprates remains poorly
understood. We have used high-resolution inelastic x-ray scattering to monitor
low-energy phonons in YBaCuO (superconducting
K), which is close to a charge density wave (CDW) instability. Phonons in a
narrow range of momentum space around the CDW ordering vector exhibit extremely
large superconductivity-induced lineshape renormalizations. These results imply
that the electron-phonon interaction has sufficient strength to generate
various anomalies in electronic spectra, but does not contribute significantly
to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW
nanodomains is observed in a wide temperature range above and below ,
suggesting that the gradual onset of a spatially inhomogeneous CDW domain state
with decreasing temperature is a generic feature of the underdoped cuprates
Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}
Experimental evidence on high-Tc cuprates reveals ubiquitous charge density
wave (CDW) modulations, which coexist with superconductivity. Although the CDW
had been predicted by theory, important questions remain about the extent to
which the CDW influences lattice and charge degrees of freedom and its
characteristics as functions of doping and temperature. These questions are
intimately connected to the origin of the CDW and its relation to the
mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant
inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped
Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive
excitations from an incommensurate CDW that induces anomalously enhanced phonon
intensity, unseen using other techniques. Near the pseudogap temperature T*,
the CDW persists, but the associated excitations significantly weaken and the
CDW wavevector shifts, becoming nearly commensurate with a periodicity of four
lattice constants. The dispersive CDW excitations, phonon anomaly, and
temperature dependent commensuration provide a comprehensive momentum space
picture of complex CDW behavior and point to a closer relationship with the
pseudogap state
- …