275 research outputs found

    Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}

    Full text link
    We report neutron scattering measurements of the structure and magnetism of stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single crystal sample demonstrate that the excess oxygen dopants form a three-dimensional ordered superlattice within the interstitial regions of the crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast rate of cooling can freeze-in the disordered-oxygen state. Hence, by controlling the cooling rate, the degree of dopant disorder in our La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same time, the quenched disorder enhances the spin density wave order in a manner analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR

    Spatial Role Labeling Annotation Scheme

    Full text link

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference

    Inherent Inhomogeneities in Tunneling Spectra of BSCCO Crystals in the Superconducting State

    Full text link
    Scanning Tunneling Spectroscopy on cleaved BSCCO(2212) single crystals reveal inhomogeneities on length-scales of ∼\sim30 A˚\AA. While most of the surface yields spectra consistent with a d-wave superconductor, small regions show a doubly gapped structure with both gaps lacking coherence peaks and the larger gap having a size typical of the respective pseudo-gap for the same sample.Comment: 4 pages, 4 figure

    The origin of the anomalously strong influence of out-of-plane disorder on high-Tc superconductivity

    Full text link
    The electronic structure of Bi2Sr2-xRxCuOy(R=La, Eu) near the (pi,0) point of the first Brillouin zone was studied by means of angle-resolved photoemission spectroscopy (ARPES). The temperature T* above which the pseudogap structure in the ARPES spectrum disappears was found to have an R dependence that is opposite to that ofthe superconducting transition temperature Tc. This indicates that the pseudogap state is competing with high-Tc superconductivity, and the large Tc suppression observed with increasing the out-of-plane disorder is due to the stabilization of the pseudogap state.Comment: 4 pages, 4 figure

    Nanoscale Phenomenology from Visualizing Pair Formation Experiment

    Full text link
    Recently, Gomes et al. [1] have visualized the gap formation in nanoscale regions (NRs) above the critical temperature T_c in the high-T_c superconductor Bi_2Sr_2CaCu_2O_{8+\delta}. It has been found that, as the temperature lowers, the NRs expand in the bulk superconducting state consisted of inhomogeneities. The fact that the size of the inhomogeneity [2] is close to the minimal size of the NR [1] leads to a conclusion that the superconducting phase is a result of these overlapped NRs. In the present paper we perform the charge and percolation regime analysis of NRs and show that at the first critical doping x_{c1}, when the superconductivity starts on, each NR carries the positive electric charge one in units of electron charge, thus we attribute the NR to a single hole boson, and the percolation lines connecting these bosons emerge. At the second critical doping x_{c2}, when the superconductivity disappears, our analysis demonstrates that the charge of each NR equals two. The origin of x_{c2} can be understood by introducing additional normal phase hole fermions in NRs, whose concentration appearing above x_{c1} increases smoothly with the doping and breaks the percolation lines of bosons at x_{c2}. The last one results in disappearing the bulk bosonic property of the pseudogap (PG) region, which explains the upper bound for existence of vortices in Nernst effect [3]. Since [1] has demonstrated the absence of NRs at the PG boundary one can conclude that along this boundary, as well as in x_{c2}, all bosons disappear.Comment: 4 pages, 1 figure. Good quality figure one can find in published journal paper. Added 4 new references. Section of arXiv: 1010.043

    Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}

    Full text link
    The magnetic phase diagram of EuFe2_{2}(As1−x_{1-x}Px_{x})2_{2} was investigated by means of magnetization and muon-spin rotation studies as a function of chemical (isovalent substitution of As by P) and hydrostatic pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe spins with respect to P content and hydrostatic pressure are determined and discussed. The present investigations reveal that the magnetic coupling between the Eu and the Fe sublattices strongly depends on chemical and hydrostatic pressure. It is found that chemical and hydrostatic pressure have a similar effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure

    Giant phonon anomalies and central peak due to charge density wave formation in YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    The electron-phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic x-ray scattering to monitor low-energy phonons in YBa2_2Cu3_3O6.6_{6.6} (superconducting Tc=61\bf T_c = 61 K), which is close to a charge density wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced lineshape renormalizations. These results imply that the electron-phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW nanodomains is observed in a wide temperature range above and below Tc\bf T_c, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates

    Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}

    Full text link
    Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations, which coexist with superconductivity. Although the CDW had been predicted by theory, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T*, the CDW persists, but the associated excitations significantly weaken and the CDW wavevector shifts, becoming nearly commensurate with a periodicity of four lattice constants. The dispersive CDW excitations, phonon anomaly, and temperature dependent commensuration provide a comprehensive momentum space picture of complex CDW behavior and point to a closer relationship with the pseudogap state
    • …
    corecore