16 research outputs found

    How environmental managers perceive and approach the issue of invasive species: the case of Japanese knotweed s.l. (RhĂŽne River, France)

    Get PDF
    We would like to thank Springer for publishing our article. The final publication is available at http://link.springer.com/article/10.1007%2Fs10530-015-0969-1International audienceStudying the perceptions of stakeholders or interested parties is a good way to better understand behaviours and decisions. This is especially true for the management of invasive species such as Japanese knotweed s.l. This plant has spread widely in the RhĂŽne basin, where signiïŹcant ïŹnancial resources have been devoted to its management. However, no control technique is recognized as being particularly effective. Many uncertainties remain and many documents have been produced by environmental managers to disseminate current knowledge about the plant and its management. This article aims at characterizing the perceptions that environmental managers have of Japanese knotweed s.l. A discourse analysis was conducted on the printed documentation produced about Japanese knotweed s.l. by environmental managers working along the RhĂŽne River (France). The corpus was both qualitatively and quantitatively analysed. The results indicated a diversity of perceptions depending on the type of environmental managers involved, as well as the geographicalareas and scales on which they acted. Whereas some focused on general knowledge relating to the origins and strategies of colonization, others emphasized the diversity and efïŹcacy of the prospective eradication techniques. There is a real interest in implementing targeted actions to meet local issues. To do so, however, these issues must be better deïŹned. This is a challenging task, as it must involve all types of stakeholders

    Model for chemotactic bacterial bands

    No full text

    Analyser les données d'abondance dominance des plantes quantitativement: des distributions beta cumulées avec excÚs de zéros ont des résultats prometteurs

    No full text
    International audienceAlthough parametric statistical methods have several advantages over ordination methods, understory plant cover class data are traditionally more often analyzed with ordination techniques than with parametric ones. Among the latter, only the cumulative logit model can take into account all the peculiarities of cover data: bounded between 0 and 100%, asymmetric classes, high proportion of zeroes. However, results provided by the cumulative logit model are difficult to interpret. We tested ten Bayesian models based on a zero-inflated cumulative beta probability distribution which is bounded, can assume various shapes and accounts for zeroes. Some of these models also make results easier to interpret by allowing the user to directly estimate the mean and variance of data underlying cover class observations, much as in generalized linear models (GLMs). We applied our new models and the cumulative logit model to real data, then compared their performance using the Deviance Information Criterion (DIC) and sampled posterior p-values. Four of the Bayesian beta models performed better (lower DIC), as well or rarely worse (depending on species) than the cumulative logit model and showed an ease of interpretation similar to that of GLMs. They therefore provide promising alternatives to existing parametric methods for modeling plant cover class data

    Photon correlation study of spermatozoa motility

    No full text
    We report measurements of echinoderm (Asterias) spermatozoa motility by photon correlation spectroscopy and we present a method of spectral analysis from which the characteristic factors of the motion are easily determined.Nous avons appliqué la spectroscopie par corrélation de photons à l'étude de la mobilité des spermatozoides d'échinodermes (Astérias) et nous avons développé une méthode d'analyse des spectres qui permet de déterminer aisément les facteurs caractéristiques du mouvement

    BIOLID : étude du lien entre structure 3D de la végétation forestiÚre mesurée par lidar et biodiversité

    No full text
    National audiencePrésentation des résultats intermédiaires du projet BIOLID

    Rapport final INDECO 2012- Etude du lien entre structure 3D de la végétation forestiÚre mesurée par lidar et biodiversité

    No full text
    L’objectif du projet BIOLID Ă©tait de dĂ©velopper de nouvelles approches pour explorer le lien entre structure de la vĂ©gĂ©tation forestiĂšre et biodiversitĂ© en s’appuyant sur la technologie Lidar pour caractĂ©riser la structure de la vĂ©gĂ©tation. Parvenir Ă  construire des modĂšles fiables dĂ©crivant le lien entre la biodiversitĂ© et la structure de la vĂ©gĂ©tation est utile Ă  la fois pour analyser les structures les plus propices Ă  la biodiversitĂ© et pour fournir aux gestionnaires, dans le contexte de gestion durable de la ressource forestiĂšre, des outils de suivi et de gestion de cette biodiversitĂ©. Les approches BayĂ©siennes, rĂ©cemment introduites en modĂ©lisation Ă©cologique, offrent un cadre de travail particuliĂšrement intĂ©ressant pour prendre en compte les spĂ©cificitĂ©s des relations complexes entre la biodiversitĂ© et les nombreuses variables environnementales susceptibles de l’influencer. Par ailleurs, le Lidar est une technologie de tĂ©lĂ©dĂ©tection Ă©mergente qui offre un potentiel inĂ©galĂ© pour dĂ©crire la structure en 3D de la vĂ©gĂ©tation Ă  diffĂ©rentes Ă©chelles, permettant ainsi d’envisager une amĂ©lioration considĂ©rable de la caractĂ©risation de la structure par rapport Ă  celle gĂ©nĂ©ralement obtenue par les mĂ©thodes traditionnelles de terrain, et donc une amĂ©lioration des modĂšles dĂ©crivant le lien entre structure forestiĂšre et biodiversitĂ©. Dans ce contexte, le projet BIOLID s’est focalisĂ© sur l’étude de la biodiversitĂ© floristique sur deux sites d’étude couverts par des donnĂ©es lidar, une zone de plaine, centrĂ©e sur l’Observatoire PĂ©renne de l’Environnement (OPE) de l’ANDRA, et une zone de montagne, dans les Vosges. L’ abondance des 8 espĂšces les plus reprĂ©sentĂ©es sur chaque site et la richesse spĂ©cifique de 3 groupes Ă©cologiques (plantes hĂ©liophiles, Ă  hĂ©liophilie intermĂ©diaire et sciaphiles) ont Ă©tĂ© Ă©tudiĂ©es en s’appuyant sur des modĂšles BayĂ©siens qui reliaient chacun des indicateurs de biodiversitĂ© Ă  une sĂ©rie de variables environnementales abiotiques complĂ©tĂ©e par une variable de structure de la vĂ©gĂ©tation dĂ©rivĂ©e des donnĂ©es lidar. 10 variables lidar, calculĂ©es sur 4 voisinages de tailles diffĂ©rentes, 15 m, 50 m, 100 m et 200 m. 440 modĂšles ont ainsi Ă©tĂ© construits. Pour chaque modĂšle la significativitĂ© statistique de l’apport de la variable lidar a Ă©tĂ© Ă©tudiĂ©e ainsi que la magnitude et la direction des effets de cette variable. Comme dĂ©jĂ  observĂ© dans des Ă©tudes prĂ©cĂ©dentes, la sensibilitĂ© des indicateurs de biodiversitĂ© floristique aux paramĂštres de structure s’est rĂ©vĂ©lĂ©e variable selon les sites d’étude. Sur le site de l’OPE aucune conclusion n’a pu ĂȘtre tirĂ©e sur l’amĂ©lioration des modĂšles d’abondance par l’intĂ©gration d’une variable de structure lidar - bruit trop important au niveau des effets de la variable lidar- et la richesse spĂ©cifique des 3 groupes Ă©cologiques Ă©tudiĂ©s s’est rĂ©vĂ©lĂ©e globalement insensible aux variables de structure lidar testĂ©s (81 % des modĂšles indiquent des effets faibles de ces variables). Sur les Vosges les rĂ©sultats expriment, au contraire, 25 % des modĂšles pour les 8 indicateurs d’abondance, respectivement 28 %, pour les 3 indicateurs de richesse spĂ©cifique, indiquent une relation significative des indicateurs aux variables lidar, soulignant l’intĂ©rĂȘt d’utiliser ces variables dans les modĂšles. Il est aussi intĂ©ressant de noter la diffĂ©rence entre les comportements individuels des espĂšces les plus reprĂ©sentĂ©es et ceux du groupe Ă©cologique auxquelles elles appartiennent. Les groupes hĂ©liophiles et sciaphiles semblent rĂ©pondre de façon assez directe au niveau de lumiĂšre, avec cependant un effet d’impact Ă  distance des trouĂ©es pour la richesse du groupe des plantes sciaphiles, effet qui semble rĂ©vĂ©ler un comportement d’espĂšce d’intĂ©rieur forestier de ce groupe dĂ©jĂ  rapportĂ© pour d’autres organismes (oiseaux par exemple). Le lien entre l’abondance de chaque espĂšce et la structure du couvert, lorsqu’il a pu ĂȘtre mis en Ă©vidence, est beaucoup plus complexe Ă  expliquer mĂȘme s’il implique assez souvent des variables de hauteur de vĂ©gĂ©tation, Ă  diffĂ©rentes Ă©chelles. L’intĂ©rĂȘt de pouvoir caractĂ©riser la structure de la vĂ©gĂ©tation sur un voisinage au-delĂ  de celui gĂ©nĂ©ralement utilisĂ© pour des relevĂ©s dendromĂ©triques de terrain a Ă©tĂ© clairement mis en Ă©vidence. L’analyse de la structure sur des placettes de 15 m sur lesquelles la biodiversitĂ© est observĂ©e n’a pas suffi dans la majoritĂ© des cas pour expliquer cette biodiversitĂ© locale. Utiliser des donnĂ©es lidar pour amĂ©liorer la modĂ©lisation du lien entre biodiversitĂ© et structure forestiĂšre apparait donc comme une piste de recherche prometteuse

    Projet BIOLID- ANR- INDECO 2012. Compte-rendu de fin de projet

    No full text
    L’objectif du projet BIOLID Ă©tait de dĂ©velopper de nouvelles approches pour explorer le lien entre structure de la vĂ©gĂ©tation forestiĂšre et biodiversitĂ© en s’appuyant sur la technologie Lidar pour caractĂ©riser la structure de la vĂ©gĂ©tation. Parvenir Ă  construire des modĂšles fiables dĂ©crivant le lien entre la biodiversitĂ© et la structure de la vĂ©gĂ©tation est utile Ă  la fois pour analyser les structures les plus propices Ă  la biodiversitĂ© et pour fournir aux gestionnaires, dans le contexte de gestion durable de la ressource forestiĂšre, des outils de suivi et de gestion de cette biodiversitĂ©. Les approches BayĂ©siennes, rĂ©cemment introduites en modĂ©lisation Ă©cologique, offrent un cadre de travail particuliĂšrement intĂ©ressant pour prendre en compte les spĂ©cificitĂ©s des relations complexes entre la biodiversitĂ© et les nombreuses variables environnementales susceptibles de l’influencer. Par ailleurs, le Lidar est une technologie de tĂ©lĂ©dĂ©tection Ă©mergente qui offre un potentiel inĂ©galĂ© pour dĂ©crire la structure en 3D de la vĂ©gĂ©tation Ă  diffĂ©rentes Ă©chelles, permettant ainsi d’envisager une amĂ©lioration considĂ©rable de la caractĂ©risation de la structure par rapport Ă  celle gĂ©nĂ©ralement obtenue par les mĂ©thodes traditionnelles de terrain, et donc une amĂ©lioration des modĂšles dĂ©crivant le lien entre structure forestiĂšre et biodiversitĂ©. Dans ce contexte, le projet BIOLID s’est focalisĂ© sur l’étude de la biodiversitĂ© floristique sur deux sites d’étude couverts par des donnĂ©es lidar, une zone de plaine, centrĂ©e sur l’Observatoire PĂ©renne de l’Environnement (OPE) de l’ANDRA, et une zone de montagne, dans les Vosges. L’abondance des 8 espĂšces les plus reprĂ©sentĂ©es sur chaque site et la richesse spĂ©cifique de 3 groupes Ă©cologiques (plantes hĂ©liophiles, Ă  hĂ©liophilie intermĂ©diaire et sciaphiles) ont Ă©tĂ© Ă©tudiĂ©es en s’appuyant sur des modĂšles BayĂ©siens qui reliaient chacun des indicateurs de biodiversitĂ© Ă  une sĂ©rie de variables environnementales abiotiques complĂ©tĂ©e par une variable de structure de la vĂ©gĂ©tation dĂ©rivĂ©e des donnĂ©es lidar. 10 variables lidar, calculĂ©es sur 4 voisinages de tailles diffĂ©rentes, 15 m, 50 m, 100 m et 200 m. 440 modĂšles ont ainsi Ă©tĂ© construits. Pour chaque modĂšle la significativitĂ© statistique de l’apport de la variable lidar a Ă©tĂ© Ă©tudiĂ©e ainsi que la magnitude et la direction des effets de cette variable. Comme dĂ©jĂ  observĂ© dans des Ă©tudes prĂ©cĂ©dentes, la sensibilitĂ© des indicateurs de biodiversitĂ© floristique aux paramĂštres de structure s’est rĂ©vĂ©lĂ©e variable selon les sites d’étude. Sur le site de l’OPE aucune conclusion n’a pu ĂȘtre tirĂ©e sur l’amĂ©lioration des modĂšles d’abondance par l’intĂ©gration d’une variable de structure lidar - bruit trop important au niveau des effets de la variable lidar- et la richesse spĂ©cifique des 3 groupes Ă©cologiques Ă©tudiĂ©s s’est rĂ©vĂ©lĂ©e globalement insensible aux variables de structure lidar testĂ©s (81 % des modĂšles indiquent des effets faibles de ces variables). Sur les Vosges les rĂ©sultats expriment, au contraire, 25 % des modĂšles pour les 8 indicateurs d’abondance, respectivement 28 %, pour les 3 indicateurs de richesse spĂ©cifique, indiquent une relation significative des indicateurs aux variables lidar, soulignant l’intĂ©rĂȘt d’utiliser ces variables dans les modĂšles. Il est aussi intĂ©ressant de noter la diffĂ©rence entre les comportements individuels des espĂšces les plus reprĂ©sentĂ©es et ceux du groupe Ă©cologique auxquelles elles appartiennent. Les groupes hĂ©liophiles et sciaphiles semblent rĂ©pondre de façon assez directe au niveau de lumiĂšre, avec cependant un effet d’impact Ă  distance des trouĂ©es pour la richesse du groupe des plantes sciaphiles, effet qui semble rĂ©vĂ©ler un comportement d’espĂšce d’intĂ©rieur forestier de ce groupe dĂ©jĂ  rapportĂ© pour d’autres organismes (oiseaux par exemple). Le lien entre l’abondance de chaque espĂšce et la structure du couvert, lorsqu’il a pu ĂȘtre mis en Ă©vidence, est beaucoup plus complexe Ă  expliquer mĂȘme s’il implique assez souvent des variables de hauteur de vĂ©gĂ©tation, Ă  diffĂ©rentes Ă©chelles. L’intĂ©rĂȘt de pouvoir caractĂ©riser la structure de la vĂ©gĂ©tation sur un voisinage au-delĂ  de celui gĂ©nĂ©ralement utilisĂ© pour des relevĂ©s dendromĂ©triques de terrain a Ă©tĂ© clairement mis en Ă©vidence. L’analyse de la structure sur des placettes de 15 m sur lesquelles la biodiversitĂ© est observĂ©e n’a pas suffi dans la majoritĂ© des cas pour expliquer cette biodiversitĂ© locale. Utiliser des donnĂ©es lidar pour amĂ©liorer la modĂ©lisation du lien entre biodiversitĂ© et structure forestiĂšre apparait donc comme une piste de recherche prometteuse

    Evaluer le compromis productivitĂ© – biodiversitĂ© en forĂȘt d'OrlĂ©ans avec Simmem

    No full text
    National audiencePrĂ©sentation des indicateurs indirects de biodiversitĂ© dĂ©veloppĂ©s pour les bryophytes et les rapaces de la forĂȘt d'OrlĂ©ans, et du couplage fait avec le simulateur Simmem implĂ©mentĂ© dans CAPSIS. Premiers rĂ©sultats sur le compromis entre productivitĂ© et biodiversitĂ©

    Utilisation des donnĂ©es Lidar aĂ©roportĂ©es pour amĂ©liorer le suivi de la richesse et de la diversitĂ© spĂ©cifiques en forĂȘts de montagne et de plaine

    No full text
    International audienceWe explored the potential of airborne laser scanner (ALS) data to improve Bayesian models linking biodiversity indicators of the understory vegetation to environmental factors. Biodiversity was studied at plot level and models were built to investigate species abundance for the most abundant plants found on each study site, and for ecological group richness based on light preference. The usual abiotic explanatory factors related to climate, topography and soil properties were used in the models. ALS data, available for two contrasting study sites, were used to provide biotic factors related to forest structure, which was assumed to be a key driver of understory biodiversity. Several ALS variables were found to have significant effects on biodiversity indicators. However, the responses of biodiversity indicators to forest structure variables, as revealed by the Bayesian model outputs, were shown to be dependent on the abiotic environmental conditions characterizing the study areas. Lower responses were observed on the lowland site than on the mountainous site. In the latter, shade-tolerant and heliophilous species richness was impacted by vegetation structure indicators linked to light penetration through the canopy. However, to reveal the full effects of forest structure on biodiversity indicators, forest structure would need to be measured over much wider areas than the plot we assessed. It seems obvious that the forest structure surrounding the field plots can impact biodiversity indicators measured at plot level. Various scales were found to be relevant depending on: the biodiversity indicators that were modelled, and the ALS variable. Finally, our results underline the utility of lidar data in abundance and richness models to characterize forest structure with variables that are difficult to measure in the field, either due to their nature or to the size of the area they relate to

    Cartographie et modélisation de al biodiversité à l'aide de la télédétection

    No full text
    International audienceBiodiversity conservation is imperative in the face of increasing anthropic pressures and threats to forest ecosystems. Our ability to evaluate and monitor biodiversity is essential to ensure effective conservation. Forest structure is a key factor driving several processes in forest ecosystems. Stand structures affect microclimate, habitat quality and therefore biodiversity potential. Biodiversity indicators have been shown to be strongly correlated with the three-dimensional spatial pattern of vegetation (MacArthur and MacArthur, 1961). And the richness of wildlife has been related to canopy three-dimensional features (Carey et al., 1991). Establishing reliable models describing the link between biodiversity and forest structure would facilitate the implementation of sustainable management strategies and practices. Forest structure is generally described from field measurements. But only a limited number of plots can be inventoried, as this work is both costly and time-consuming. Remote sensing has the potential to provide quick and accurate measurements over large areas. The potential of LiDAR (Light Detection And Ranging) systems to measure forest structure and assess forest attributes is widely acknowledged (NĂŠsset, 2004; Nelson et al., 1988). LiDAR are active systems providing precise distance measurements based on elapsed time between the emission of a laser pulse and the reception of the backscattered signal. The use of LiDAR in landscape ecology and biodiversity studies is a recent field of research. Metrics extracted from LiDAR data have been proposed for characterizing landscape pattern and structure (MĂŒcke et al., 2010). The use of LiDAR data allows analysing relationships between biodiversity indicators and a broad range of structural metrics related to the 3D arrangement of vegetation. Indeed LiDAR data provides the opportunity to analyse the impact of forest structure surrounding field plots for which biodiversity indicators were measured. Some studies already explored the relationship between biodiversity indicators and forest structure metrics from LiDAR data (Lesak et al., 2011; MĂŒller and Brandl, 2009; MĂŒller et al., 2014; Zellweger et al., 2013). However, while the relationships between LiDAR metrics and faunal biodiversity have already been explored, floristic biodiversity has not yet been analysed. Furthermore, most studies did not integrate the ecological context in addition to 3D vegetation structure data, when the models explaining the biodiversity indicators were built. Ecological context here refers to abiotic variables, on which biodiversity indicators highly depend (Maestre et al., 2009). Complementing LiDAR metrics with abiotic variables improved model predictive power (Zellweger et al., 2014). The aim of this study was to further evaluate the potential of LiDAR for floristic biodiversity monitoring. Floristic biodiversity was studied in terms of plant species abundance and richness of the different ecological groups. Bayesian statistical models, described by Zilliox and Gosselin (2013), were used to model the link between floristic biodiversity and both abiotic and biotic characteristics of the environment. In these models forest structure was initially assessed using traditional field measurements on circular plots with a 15 m radius (e.g. basal area, cover). Two specific objectives were identified for this study. Firstly, we evaluated the potential of LiDAR to replace forest structure indicators measured in the field and to improve the modelling of the link between floristic biodiversity and stand structure. Secondly, we took advantage of the capacity of LiDAR to assess forest structures at various scales, in order to improve our knowledge on the drivers of biodiversity and try to identify up to which distance the structure can influence local biodiversity. The study site was a deciduous forest located in North-Eastern France (48.53° N, 5.37° E). Forest was studied under leaf-on conditions in a 60 kmÂČ area. The climate is semi-continental, and subject to an oceanic influence. The site was comprised of complex stands with multi-layered forests, dominated by European beech (Fagus sylvatica), Hornbeams (Carpinus betulus) and Sycamore maple (Acer pseudoplatanus). LiDAR data was collected from small-footprint airborne LiDAR with a high point density of 30 pt/mÂČ. 741 field plots located within a radius of 100 km around the study area and 49 field plots located within the study area were used to build the models. As the study site was too small to offer enough site type diversity, the first field dataset was used to model the impact of site type variation on biodiversity. Five abiotic variables were thus included in the model: mean annual temperature, solar radiation, topography, soil pH and soil water capacity. Temperature, solar radiation and topography were subsequently considered as constant over the study site. The second field dataset was used to include and test one by one diverse LiDAR metrics in the statistical model. Stand-level metrics were extracted from LiDAR data in order to describe vertical and horizontal distribution of forest vegetation. Metrics were extracted from circular plots within a 15 m radius as field plots, and also 50 m, 100 m and 200 m radius. Bayesian statistical models provide an estimate of the magnitude of the relationship between biodiversity indicators and ecological variables. We could evaluate the magnitude of the relationship between the floristic biodiversity indicators and the LiDAR metrics. Deviance Information Criterion (DIC) was used to compare models with each other. Several metrics were necessary to predict plant species abundance and richness models. Several LiDAR metrics measured at the plot level were found to have non-negligible relationships with floristic biodiversity. The study also highlights that forest structure in the neighbourhood of field plots can impact on biodiversity indicators measured at plot level
    corecore