2,444 research outputs found

    2008src0864

    Get PDF

    Holographic Screening Length in a Hot Plasma of Two Sphere

    Full text link
    We study the screening length of a quark-antiquark pair moving in a hot plasma living in two sphere S2S^2 manifold using AdS/CFT correspondence where the background metric is four dimensional Schwarzschild-AdS black hole. The geodesic solution of the string ends at the boundary is given by a stationary motion in the equatorial plane as such the separation length LL of quark-antiquark pair is parallel to the angular velocity ω\omega. The screening length and the bound energy are computed numerically using Mathematica. We find that the plots are bounded from below by some functions related to the momentum transfer PcP_c of the drag force configuration. We compare the result by computing the screening length in the quark-antiquark reference frame where the gravity dual are "Boost-AdS" and Kerr-AdS black holes. Finding relations of the parameters of both black holes, we argue that the relation between mass parameters MSchM_{Sch} of the Schwarzschild-AdS black hole and MKerrM_{Kerr} of the Kerr-AdS black hole in high temperature is given by MKerr=MSch(1−a2l2)3/2M_{Kerr}=M_{Sch}(1-a^2l^2)^{3/2}, where aa is the angular momentum parameter.Comment: Major revision: title changed, adding authors, 13 pages, 8 figures, etc. Accepted for publication in European Physical Journal

    Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Get PDF
    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy

    Local free-fall temperature of a RN-AdS black hole

    Full text link
    We use the global embedding Minkowski space (GEMS) geometries of a (3+1)-dimensional curved Reissner-Nordstr\"om(RN)-AdS black hole spacetime into a (5+2)-dimensional flat spacetime to define a proper local temperature, which remains finite at the event horizon, for freely falling observers outside a static black hole. Our extended results include the known limiting cases of the RN, Schwarzschild--AdS, and Schwarzschild black holes.Comment: 18 pages, 11 figures, version to appear in Int. J. Mod. Phys.

    Hydrography and circulation west of Sardinia in June 2014

    Get PDF
    In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m−3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m−3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15′ E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s−1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition

    HEAD ACCELERATION EVENTS USING INSTRUMENTED MOUTHGUARDS IN FEMALE RINGETTE PLAYERS

    Get PDF
    Ringette is a contact sport which prompts high rates of head contacts and concussion, some of the highest reported rates in youth sport. Biomechanical forces at the head can cause concussion injury, therefore examination of head acceleration events and head biomechanics during ringette is useful to understand injury risk and mechanism. The purpose of this study was to describe head acceleration events (HAEs) in female youth ringette players and examine head biomechanics during video-verified head acceleration events. Instrumented mouthguards were worn by 8 players and 36 video-verified HAEs were accumulated from in-game exposure. Results indicate athletes sustain HAEs from both direct and indirect head contacts. Mann Whitney U tests reveal no significant differences in biomechanics between direct and indirect HAEs. Most direct head impacts were related to mechanism of head-head contacts or head contact with the boards and typically involved impact high on the head. Indirect HAEs were usually due to whiplash or stabilization. Data also show most HAEs result from deliberate physical contacts initiated by non-ring carriers. Future work with greater data accumulation and verification of head acceleration events can inform coaches and players on the risks of head injury associated with specific mechanisms

    Gravity and Nonequilibrium Thermodynamics of Classical Matter

    Full text link
    Renewed interest in deriving gravity (more precisely, the Einstein equations) from thermodynamics considerations [1, 2] is stirred up by a recent proposal that 'gravity is an entropic force' [3] (see also [4]). Even though I find the arguments justifying such a claim in this latest proposal rather ad hoc and simplistic compared to the original one I would unreservedly support the call to explore deeper the relation between gravity and thermodynamics, this having the same spirit as my long-held view that general relativity is the hydrodynamic limit [5, 6] of some underlying theories for the microscopic structure of spacetime - all these proposals, together with that of [7, 8], attest to the emergent nature of gravity [9]. In this first paper of two we set the modest goal of studying the nonequilibrium thermodynamics of classical matter only, bringing afore some interesting prior results, without invoking any quantum considerations such as Bekenstein-Hawking entropy, holography or Unruh effect. This is for the sake of understanding the nonequilibrium nature of classical gravity which is at the root of many salient features of black hole physics. One important property of gravitational systems, from self-gravitating gas to black holes, is their negative heat capacity, which is the source of many out-of-the ordinary dynamical and thermodynamic features such as the non-existence in isolated systems of thermodynamically stable configurations, which actually provides the condition for gravitational stability. A related property is that, being systems with long range interaction, they are nonextensive and relax extremely slowly towards equilibrium. Here we explore how much of the known features of black hole thermodynamics can be derived from this classical nonequilibrium perspective. A sequel paper will address gravity and nonequilibrium thermodynamics of quantum fields [10].Comment: 25 pages essay. Invited Talk at Mariofest, March 2010, Rosario, Argentina. Festschrift to appear as an issue of IJMP

    Residents\u27 Confidence Providing Primary Care With Behavioral Health Integration

    Get PDF
    BACKGROUND AND OBJECTIVES: Behavioral health integration (BHI) entails integrated behavioral health clinicians (IBHCs) providing care-generally for mental health and substance abuse disorders and behavioral comorbidity- within the operational functioning of primary care. Because limited data exist regarding BHI in residency, we studied its impact on resident education by examining whether increased behavioral health (BH) co-management improved residents\u27 perceived ability to treat BH conditions. METHODS: We included residents from internal and family medicine training programs using BHI in residents\u27 continuity clinics and assessed the level of co-management between primary care and IBHCs and the following domains: (1) confidence in managing BH conditions, (2) barriers to BH provision, (3) perception of autonomy when working with IBHCs, (4) satisfaction with the clinic, and (5) perceived educational value of BH learning modes. RESULTS: Altogether, 117 residents participated in our survey (73.1% response rate). Residents who had co-managed \u3e /= five patients alongside IBHCs reported significantly higher confidence than those who had co-managed andlt; five patients with BH conditions. The association remained significant after adjustment for residents\u27 level of training and specialty. In rating BH learning modes, residents rated most highly active collaboration with IBHCs and observation with feedback from clinic preceptors. CONCLUSIONS: BHI training within residency enhances perceived learning and confidence in providing BH care

    Single-Step Methylation of Chitosan Using Dimethyl Carbonate as a Green Methylating Agent

    Get PDF
    N,N,N-Trimethyl chitosan (TMC) is one chitosan derivative that, because of its improved solubility, has been studied for industrial and pharmaceutic applications. Conventional methods for the synthesis of TMC involve the use of highly toxic and harmful reagents, such as methyl iodide and dimethyl sulfate (DMS). Although the methylation of dimethylated chitosan to TMC by dimethyl carbonate (DMC, a green and benign methylating agent) was reported recently, it involved a formaldehyde-based procedure. In this paper we report the single-step synthesis of TMC from chitosan using DMC in an ionic liquid. The TMC synthesised was characterised by 1H NMR spectroscopy and a functionally meaningful degree of quaternisation of 9% was demonstrated after a 12-h reaction time
    • …
    corecore