5,946 research outputs found
Synthesizing Finite-state Protocols from Scenarios and Requirements
Scenarios, or Message Sequence Charts, offer an intuitive way of describing
the desired behaviors of a distributed protocol. In this paper we propose a new
way of specifying finite-state protocols using scenarios: we show that it is
possible to automatically derive a distributed implementation from a set of
scenarios augmented with a set of safety and liveness requirements, provided
the given scenarios adequately \emph{cover} all the states of the desired
implementation. We first derive incomplete state machines from the given
scenarios, and then synthesis corresponds to completing the transition relation
of individual processes so that the global product meets the specified
requirements. This completion problem, in general, has the same complexity,
PSPACE, as the verification problem, but unlike the verification problem, is
NP-complete for a constant number of processes. We present two algorithms for
solving the completion problem, one based on a heuristic search in the space of
possible completions and one based on OBDD-based symbolic fixpoint computation.
We evaluate the proposed methodology for protocol specification and the
effectiveness of the synthesis algorithms using the classical alternating-bit
protocol.Comment: This is the working draft of a paper currently in submission.
(February 10, 2014
Recommended from our members
The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature
In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop
like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates
Student perspectives on the relationship between a curve and its tangent in the transition from Euclidean Geometry to Analysis
The tangent line is a central concept in many mathematics and science courses. In this paper we describe a model of students’ thinking – concept images as well as ability in symbolic manipulation – about the tangent line of a curve as it has developed through students’ experiences in Euclidean Geometry and Analysis courses. Data was collected through a questionnaire administered to 196 Year 12 students. Through Latent Class Analysis, the participants were classified in three hierarchical groups representing the transition from a Geometrical Global perspective on the tangent line to an Analytical Local perspective. In the light of this classification, and through qualitative explanations of the students’ responses, we describe students’ thinking about tangents in terms of seven factors. We confirm the model constituted by these seven factors through Confirmatory Factor Analysis
Formal Verification Integration Approach for DSML
International audienceThe application of formal methods (especially, model check- ing and static analysis techniques) for the verification of safety critical embedded systems has produced very good results and raised the inter- est of system designers up to the application of these technologies in real size projects. However, these methods usually rely on specific verifica- tion oriented formal languages that most designers do not master. It is thus mandatory to embed the associated tools in automated verification toolchains that allow designers to rely on their usual domain-specific modeling languages (DSMLs) while enjoying the benefits of these power- ful methods. More precisely, we propose a language to formally express system requirements and interpret verification results so that system designers (DSML end-users) avoid the burden of learning some formal verification technologies. Formal verification is achieved through trans- lational semantics. This work is based on a metamodeling pattern for executable DSML that favors the definition of generative tools and thus eases the integration of tools for new DSML
Quantum synthesis of arbitrary unitary operators
Nature provides us with a restricted set of microscopic interactions. The
question is whether we can synthesize out of these fundamental interactions an
arbitrary unitary operator. In this paper we present a constructive algorithm
for realization of any unitary operator which acts on a (truncated) Hilbert
space of a single bosonic mode. In particular, we consider a physical
implementation of unitary transformations acting on 1-dimensional vibrational
states of a trapped ion. As an example we present an algorithm which realizes
the discrete Fourier transform.Comment: 6 RevTeX pages with 3 figures, submitted to Phys.Rev.A, see also
http://nic.savba.sk/sav/inst/fyzi/qo
String Indexing for Patterns with Wildcards
We consider the problem of indexing a string of length to report the
occurrences of a query pattern containing characters and wildcards.
Let be the number of occurrences of in , and the size of
the alphabet. We obtain the following results.
- A linear space index with query time .
This significantly improves the previously best known linear space index by Lam
et al. [ISAAC 2007], which requires query time in the worst case.
- An index with query time using space , where is the maximum number of wildcards allowed in the pattern.
This is the first non-trivial bound with this query time.
- A time-space trade-off, generalizing the index by Cole et al. [STOC 2004].
We also show that these indexes can be generalized to allow variable length
gaps in the pattern. Our results are obtained using a novel combination of
well-known and new techniques, which could be of independent interest
Distribution of entanglement in light-harvesting complexes and their quantum efficiency
Recent evidence of electronic coherence during energy transfer in
photosynthetic antenna complexes has reinvigorated the discussion of whether
coherence and/or entanglement has any practical functionality for these
molecular systems. Here we investigate quantitative relationships between the
quantum yield of a light-harvesting complex and the distribution of
entanglement among its components. Our study focusses on the entanglement yield
or average entanglement surviving a time scale comparable to the average
excitation trapping time. As a prototype system we consider the
Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that
there is an inverse relationship between the quantum efficiency and the average
entanglement between distant donor sites. Our results suggest that longlasting
electronic coherence among distant donors might help modulation of the
lightharvesting function.Comment: Version accepted for publication in NJ
Requirements modelling and formal analysis using graph operations
The increasing complexity of enterprise systems requires a more advanced
analysis of the representation of services expected than is currently possible.
Consequently, the specification stage, which could be facilitated by formal
verification, becomes very important to the system life-cycle. This paper presents
a formal modelling approach, which may be used in order to better represent
the reality of the system and to verify the awaited or existing system’s properties,
taking into account the environmental characteristics. For that, we firstly propose
a formalization process based upon properties specification, and secondly we
use Conceptual Graphs operations to develop reasoning mechanisms of verifying
requirements statements. The graphic visualization of these reasoning enables us
to correctly capture the system specifications by making it easier to determine if
desired properties hold. It is applied to the field of Enterprise modelling
Implementation of quantum maps by programmable quantum processors
A quantum processor is a device with a data register and a program register.
The input to the program register determines the operation, which is a
completely positive linear map, that will be performed on the state in the data
register. We develop a mathematical description for these devices, and apply it
to several different examples of processors. The problem of finding a processor
that will be able to implement a given set of mappings is also examined, and it
is shown that while it is possible to design a finite processor to realize the
phase-damping channel, it is not possible to do so for the amplitude-damping
channel.Comment: 10 revtex pages, no figure
Exciton Dynamics in Photosynthetic Complexes: Excitation by Coherent and Incoherent Light
In this paper we consider dynamics of a molecular system subjected to
external pumping by a light source. Within a completely quantum mechanical
treatment, we derive a general formula, which enables to asses effects of
different light properties on the photo-induced dynamics of a molecular system.
We show that once the properties of light are known in terms of certain
two-point correlation function, the only information needed to reconstruct the
system dynamics is the reduced evolution superoperator. The later quantity is
in principle accessible through ultrafast non-linear spectroscopy. Considering
a direct excitation of a small molecular antenna by incoherent light we find
that excitation of coherences is possible due to overlap of homogeneous line
shapes associated with different excitonic states. In Markov and secular
approximations, the amount of coherence is significant only under fast
relaxation, and both the populations and coherences between exciton states
become static at long time. We also study the case when the excitation of a
photosynthetic complex is mediated by a mesoscopic system. We find that such
case can be treated by the same formalism with a special correlation function
characterizing ultrafast fluctuations of the mesoscopic system. We discuss
bacterial chlorosom as an example of such a mesoscopic mediator and propose
that the properties of energy transferring chromophore-protein complexes might
be specially tuned for the fluctuation properties of their associated antennae.Comment: 12 page
- …
