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émanant des établissements d’enseignement et de
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Abstract. The application of formal methods (especially, model check-
ing and static analysis techniques) for the verification of safety critical
embedded systems has produced very good results and raised the inter-
est of system designers up to the application of these technologies in real
size projects. However, these methods usually rely on specific verifica-
tion oriented formal languages that most designers do not master. It is
thus mandatory to embed the associated tools in automated verification
toolchains that allow designers to rely on their usual domain-specific
modeling languages (DSMLs) while enjoying the benefits of these power-
ful methods. More precisely, we propose a language to formally express
system requirements and interpret verification results so that system
designers (DSML end-users) avoid the burden of learning some formal
verification technologies. Formal verification is achieved through trans-
lational semantics. This work is based on a metamodeling pattern for
executable DSML that favors the definition of generative tools and thus
eases the integration of tools for new DSMLs.

Keywords: Domain specific modeling language, Formal verification, Model
checking, Translational semantics, Traceability, Verification feedback

1 Introduction

Domain-Specific Modeling Languages (DSMLs) are a major asset in the
development of complex systems. In particular, they are widely used in the
early phases of the development of safety critical systems. In this context,
model validation and verification (V&V) activities are key features to
assess the conformance of the future system to its safety and liveness
requirements. They require the introduction of an execution semantics for
the DSMLs. It is usually provided as a mapping from the abstract syntax

⋆ This works was funded by the french Ministry of Industry through the ITEA2 project
OPEES and the french ANR project GEMOC.



(metamodel) of the DSML to an existing semantic domain, generally a
formal language, in order to reuse powerful tools (simulator or model-
checker) available for this domain [1,2].

One key issue is that system designers (DSML end-users) should not
be required to have a solid knowledge on formal languages and associated
tools. The challenge is thus to leverage formal tools so that the system
designer has not to burden with formal aspects and to integrate them
in traditional CASE tools, like the Eclipse platform. Model Driven En-
gineering (MDE) already provides means to define metamodels, static
properties, textual and graphical syntaxes. What should be addressed is
thus 1) providing the system designer with a user-friendly language to
formalize system requirements, 2) defining a translational semantics from
the DSML to a formal language, 3) translating formal requirements into
formal language logic formulae according to the translational semantics,
and eventually, 4) bringing back formal verification results back at the
DSML level so that they are understandable by the system designer.

Our contribution is on the tooling and methodological side as we pro-
pose an approach to integrate formal verification through model-checking
for a DSML. We rely on the Executable DSML pattern [3] to define all
concerns involved in the definition of DSML semantics. We have fully
tooled the Temporal OCL (TOCL) language proposed by Gogolla et al.
[4], including the expression of formal properties on a specific model and
their translation to the logic formulae of the target language (Linear Tem-
poral Logic (LTL) formulae at the moment). We define guidelines to val-
idate the translational semantics to the formal domain. Finally, the feed-
back is largely automated thanks to mappings identified while defining
the translation semantics.

To illustrate this paper, we consider as a running example the xSPEM
executable extension of the SPEM process modeling language [5]. It was
designed in order to experiment V&V in the TopCased toolkit using an
MDE approach.

The paper is organized as follows. Section 2 presents different manip-
ulated elements by the system designer (models to be verified, verification
requests and expected verification results). Section 3 presents the work
to be done at DSML level on the running use-case. Section 4 introduces
the proposed verification methodology with a translational semantics of
xSPEM into the Fiacre formal language [6]. Section 5 explains vari-
ous steps in order to provide verification results from formal tools to the
xSPEM level through Fiacre. Section 6 gives some related work in the
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Fig. 1. a xSPEM model

Start wd2
Start wd1
Finish wd2
Start wd3
Finish wd1
Finish wd3

Listing 1.1. A terminating scenario

domain of user level verification results. Finally, we conclude and presents
future work in Section 7.

2 DSML end-user requirements

This section presents the domain – process modeling – considered in the
case study and the requirements of system designers, the DSML end-
users. We first present the kind of process models the DSML end-users
want to build and the properties they want to check on their models.
Finally, we describe the feedbacks expected from verification tools in order
to get insights on the errors the models may contain.

2.1 DSML end-user models

Fig. 1 shows an example of a process model. It corresponds to a simpli-
fied development process composed of three activities, each represented
in an ellipse: wd1, wd2 and wd3. Arrows between activities indicate de-
pendencies: the target activity depends on the source activity. The label
specifies the kind of dependency. The word before the “To” indicates the
state that must have been reached by the source activity in order to per-
form on the target activity the action, which appears after the “To”. For
example, the ”startToFinish” dependency between wd3 and wd1 means
that wd1 can only be finished when wd3 has been started. To keep this
example simple, we have not represented the resources that are required
to perform an activity.

2.2 DSML end-user verifications

To validate or to verify a model, the DSML end-user generally checks
that properties derived from the system requirements hold on that model.



We focus on behavioral properties, that is properties that concern the
evolution of the model over time.

The DSML end-user may be interested in general properties not spe-
cific to a given process model. For example, he may want to check whether
a process model may finish (we call it P1 requirement). A process finishes if
all its activities finish while respecting constraints imposed by dependen-
cies and resource allocation. If this property holds, the DSML end-users
may want to get a terminating scenario and use it to pilot the process
execution. Listing 1.1 is an example of terminating scenario for the model
of Fig. 1.

Another kind of properties can be targeted which is specific properties.
The DSML end-user may also want to verify properties that are specific
to a particular process model. As an example, he might want to check
whether it is required that wd1 is finished before wd2 is finished (we call
it P2 requirement).

2.3 Verification feedback

Once system designers have defined their models and formalized their
requirements through properties, they want to have feedbacks on the
assessment of those properties. Obviously, these feedbacks (named also
counter-example or scenario) should be expressed at the domain-specific
level.

For instance, using the example shown in Fig. 1, property P1 holds
and the process may finish. The DSML end-user can be provided with
a scenario that describes a possible execution which leads to a finished
process. Listing 1.1 is an example of such a terminating scenario. It lists
actions (start or finish) applied on activities.

TheDSML end-user will be able to play those scenarios using a model
animator like the one developed in the TopCased project [7].

3 MDE for V&V CASE tools

MDE provides powerful techniques and tools to define a metamodel for
the considered domain (using Ecore for example), completed with static
properties (e.g. OCL) and to generate either textual syntactic editors
(e.g. Xtext) or graphical editors (e.g. GMF). The metamodel of xSPEM
is shown in Fig. 2. It defines the concepts of Process composed of (1)
WorkDefinitions that model the activities performed during the process,
(2) WorkSequences that define temporal dependency relations (causality
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1 workDefinition

1  resource 0..*  resources

Fig. 2. An extract of the xSPEM Metamodel

constraints) between activities and (3) Resources allocated to activities
(Parameter).

The DSML end-user is thus able to design models and check whether
static properties hold or not. Nevertheless, expressing properties which
deal with the evolution of the model over time is not that easy because
the metamodel does not usually provide all the required information. For
instance, the xSPEM end-user wants to check whether workdefinitions
may finish or not but the concept of “finished workdefinition” is not part
of the xSPEM metamodel.

3.1 The Executable DSML pattern

As part of the TopCased [8] project, Combemale et al. have defined
a metamodeling pattern called the Executable DSML pattern [3] that
describes a way to define and structure the concerns required to make a
DSML executable. The original metamodel, called the DDMM (Domain
Definition MetaModel) is extended with three other metamodels (Fig. 3).
The first metamodel describes stimuli that make the model evolve. They
are modeled as events. Start a WorkDefinition or Finish a WorkDefinition
are examples of xSPEM events. These events are modeled in the EDMM

(Event Definition MetaModel), top left of Fig. 3. A second metamodel
defines elements to model a scenario (either an input scenario or the trace
of a particular execution) as a sequence of event occurrences. It is called
TM3 (Trace Management MetaModel), top middle of Fig. 3. TM3 is not
specific to one particular DSML as it only relies on the abstract Event
concept. These two extensions allow to generate the scenario, which is
a succession of events, that we want to feedback. The third metamodel
defines the runtime information, that is data that model the state of the
model at runtime and that are not part of the DDMM. This metamodel
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Fig. 3. xSPEM Metamodel

is called SDMM (State Definition MetaModel), middle of Fig. 3. On
the xSPEM example, the SDMM includes the achievement state of a
workdefinition which is either not started, running or finished.

Fig 3 shows a fourth metamodel aside the three metamodels obtained
by applying the Executable DSML pattern to xSPEM. This additional
metamodel is called QDMM (Query Definition Metamodel), top right of
Fig. 3. It is a kind of an abstract view of the SDMM: it defines queries that
may be asked on the model. SDMM may be seen as a way to implement
the QDMM by choosing a set of attributes (like a Java class implements
a Java inteface). For example, on Fig. 3, the SDMM of WorkDefinition
defines an attribute state that can be used to implement the queries
isStarted and isFinished from QDMM. Obviously, several SDMM are
possible for one QDMM.

3.2 Formalizing behavioral properties

The properties of interest for the xSPEM end-user are behavioral prop-
erties relying on temporal operators. We have chosen to reuse the TOCL
language [4]. TOCL is an extension of OCL that introduces usual future-
oriented temporal operators such as always, sometimes, next, existsNext
as well as their past-oriented duals.



One first step to formalize the properties of interest to the DSML
end-user is to analyze the properties in order to identify the queries of
interest. The QDMM can then be defined. Considering the properties the
DSML end-user wants to assess on xSPEM models, we have identified
three queries isStarted and isFinished on WorkDefinition and isFinished
on Process. The queries on WorkDefinition are primitive (as we are not
able to evaluate them at the moment) whereas isFinished on Process may
be defined from the other ones. Here is its TOCL definition.

context Process
def : isFinished() : Boolean =
self .workDefinitions

−>forAll(a:WorkDefinition| a.isFinished())

The following property states that a process can never finish (it is the
negation of the P1 property):

context Process −− negation of P1 requirement
inv isNeverFinished:
always (not self . isFinished ())

If this condition is not satisfied, it means the process can finish and
the DSML end-user expects that a model checker would exhibit a counter
example that corresponds to a scenario that finishes the process and thus
all its activities. This scenario would be obtained on the formal language
used by the model checker and would have to be leveraged to the DSML

end-user’s domain.
We have built a TOCL syntactical editor integrated to the Eclipse

platform. It has been defined using the Xtext tool1.

4 Verification methodology

One common way to verify a DSML consists in mapping its abstract
syntax, defined by a metamodel, to a semantic domain [2]. It is called a
translational semantics. The main advantage is to reuse tools available
on this semantic domain like simulators or model-checkers. One common
drawback is the semantic gap that may exists between the DSML and the
semantics domain. To fill this gap, we target the Fiacre formal language
[6] because of its high level concepts. Fiacre is a front end language to
several verification toolboxes (Tina [9] and Cadp [10] currently). This
work focuses on the Tina toolbox.

Fig. 4 depicts the main steps and resources implied in the formal
V&V of a DSML’s model. The yellow part (top of the figure) shows re-
sources manipulated by the DSML end-user: the model conforming to

1 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/
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Fig. 4. General approach of DSML V&V

the DSML (Process.xspem), the behavioral requirements formalized us-
ing the TOCL editor (Property.tocl) as well as the scenario obtained
when one property is not satisfied (Process.xspemscn).

The blue part depicts the DSML designer task. It consists of imple-
menting a translational semantics from the DSML to the Fiacre formal
language and, based on this semantics, a backward transformation in or-
der to feedback verification results.

4.1 Fiacre Formal Language

Fiacre [6] is a french acronym for an Intermediate Format for Embedded
Distributed Components Architectures. It was designed as the target lan-
guage for model transformations from different DSMLs such as AADL
[11] or PLC [12].

Fiacre is a formal language to represent both the behavioral and tim-
ing aspects of systems, in particular embedded and distributed systems,
for formal verification and simulation purposes. Fiacre is built around two
notions:

– Processes describe the behavioral of sequential components. A pro-
cess is defined by a set of control states, each associated with a piece
of program built from deterministic constructs available in classical
programming languages (assignments, if-then-else conditionals, while



loops, and sequential compositions), non deterministic constructs (non
deterministic choice and non deterministic assignments), communica-
tion events on ports, and jumps to next state.

– Components describe the composition of processes, possibly in a hi-
erarchical manner. A component is defined as a parallel composition
of instantiated components and/or processes communicating through
ports and shared variables. The notion of component also allows to
restrict the access mode and visibility of shared variables and ports,
to associate timing constraints with communications, and to define
priority between communication events.

4.2 Translational semantics xSPEM2Fiacre

Translational semantics consists in defining the mapping from the DSML

to the formal language.

For xSPEM, the translational semantics consists in transforming a
xSPEM model into a Fiacre specification. It is performed with a model
to model (M2M) transformation expressed inATL [13] (xSPEM2FIACRE.atl
at center of Fig. 4) and then an Acceleo [14] module generates the Fi-

acre textual syntax (named Fiacre2fcr . acceleo).

Here are some rationale behind this translational semantics. We illus-
trate it with some elements in the Fiacre program corresponding to the
xSPEM example of Fig. 3.

Based on the QDMM, a Fiacre type called WDQueries was defined
to represent the two queries onWorkDefinition of interest for the xSPEM
end-user and also for causality constraints. It is a record type composed
of the two boolean fields isStarted and isFinished.

type WDQueries is record // from QDMM
isStarted : bool,
isFinished : bool

end

WDsQueries defines an array of WDQueries storing the state of all
workdefinitions of an xSPEM process. It is an argument for every workdef-
inition process.

type WDsQueries is array 3 of WDQueries end

Named constants are defined to ease the reading of the Fiacre pro-
gram by avoiding the use of meaningless integers to identify a workdefi-
nition.

const wd1Id: int is 0
const wd2Id: int is 1
const wd3Id: int is 2



Each workdefinition is translated into one Fiacre process with the
same name. Such a process is composed of three states (notStarted, run-
ning and finished) and two transitions (from notStarted to running and
then from running to finished). It is parametrized by two ports (Start
and Finish). They are mainly used to synchronize with resources used by
the workdefinition (not presented in this paper) but also ease the identi-
fication of xSPEM events for the feedback.

Each transition includes an assignment to update variables which store
the state of the activities. They were necessary to implement dependen-
cies because a Fiacre process cannot inspect the current state of other
processes.

xSPEM causality constraints are thus mapped into a Fiacre condi-
tional statement that checks whether the Fiacre processes corresponding
to the previous activities have reached the expected state. For example,
because of the start2Start constraint between wd2 and wd1, conditional
statement checks whether activity wd2 is started. If true the current state
becomes running and it is recorded that this activity has been updated
(was updated). Otherwise, nothing happens (loop statement). The follow-
ing process shows the wd1 workdefinition translated into Fiacre specifi-
cation.

process wd1 [Start:sync, Finish:sync] (& wds: WDsQueries) is
states notStarted, Running, finished
from notStarted
if (wds[$(wd2Id)].isStarted) then

Start;
wds[$(wd1Id)].isStarted := true;
to Running

else loop
end if
from Running
if (wds[$(wd3Id)].isStarted) then

Finish;
wds[$(wd1Id)].isFinished := true;
to finished

else loop
end if

The Fiacre component Process consists in instantiating the three
processes wd1, wd2 and wd3 with the actual ports and the array that
stores activities’ states (initially all activities are not started and not
finished):

component Process is
var

wds: WDsQueries :=
[ {isStarted=false , isFinished=false},
{isStarted=false , isFinished=false},
{isStarted=false , isFinished=false} ]

port
wd1Start, wd1Finish: sync,
wd2Start, wd2Finish: sync,



wd3Start, wd3Finish: sync,
par ∗ in

wd1[wd1Start, wd1Finish](&wds)
|| wd2[wd2Start, wd2Finish](&wds)
|| wd3[wd3Start, wd3Finish](&wds)

end

4.3 Translating TOCL properties

The key point is then to translate the properties as formulae on the formal
model. Obviously, this translation is done at the metamodel level and
thus has only to be written once for every DSML. As our purpose is to
facilitate the development of CASE tools for new DSML, we focus on
generic and generative approaches advocated by MDE.

We have written a generic tool to translate a TOCL property ex-
pressed on the xDSML (using QDMM queries) to a LTL formulae on
the formal language. Technically, TOCL operators, including OCL ones,
are translated in a first transformation that generates a second transfor-
mation which handles queries from QDMM. These transformations have
been written using the ATL transformation language. The second trans-
formation only depends on the way primitive queries from QDMM are
evaluated on the formal language. An ATL module must be provided to
describe the LTL fragments that corresponds to the primitive queries of
QDMM. According to the formal language, it may correspond to a pro-
cess’ state in a Fiacre model. Each query appears in that module as a
helper method that returns the corresponding LTL fragment as a string.
Implementing all these queries is a kind of checklist that ensures that all
aspects of interest for the DSML end-user are indeed modeled on the
formal side.

Here is the helper that corresponds to the primitive query isFinished
identified on WorkDefinition in the context of xSPEM to Fiacre trans-
formation.

context WorkDefinition
def isFinished (): String =

self .getFiacreId() +
”/value wds[(” + self .name + ”id)].isFinished”

The property body is built according to Fiacre properties [15]. A Fi-

acre property is composed of two elements2: a path and an observable.
A path defines the context of applying the observable. For example, the
”Process/2/1” path identifies the first instance in the second composi-
tion in the main component named Process. Observables play the role of

2 http://projects.laas.fr/fiacre/properties.html

http://projects.laas.fr/fiacre/properties.html


atomic proposition in the properties. It can be an instance state change,
a communication through a port, a communication through shared vari-
ables or the execution of a transition.

The operation getFiacreId() is a helper method which consists of iden-
tifying the Fiacre instance – generated by the transformation – corre-
sponding to the current workdefinition (self ).

The second part in this query corresponds to the predicate to be
verified, that is the observable. In the isFinished() definition, we check the
shared variable wds that stores the state of each WorkDefinition instance.

Based on the translational semantics defined in section 4.2, the prop-
erty P1 applied on the the the xSPEM model of Fig. 1 generates the
following Fiacre property.

property isNeverFinished is ltl
( [] ( not ( Process/1/value wds[ $(wd1Id) ].isFinished

and Process/2/value wds[ $(wd2Id) ].isFinished
and Process/3/value wds[ $(wd3Id) ].isFinished )))

4.4 Guidelines for validating the translation semantics

Defining a translational semantics is a highly creative activity which re-
quires high skills both in the formal language and in the DSML to find
an efficient mapping between both languages as well as in transformation
techniques. We thus only provide guidelines to favor the definition of a
correct transformation.

The first guideline is the obligation to define for each QDMM prim-
itive query the corresponding LTL fragment. QDMM queries are thus a
kind of checklist that ensures that all aspects of interest for the DSML

end-user have indeed been modeled on the formal side.
A second way to validate the translational semantics consists in for-

malizing invariants on the DSML using TOCL and then automatically
translating them on the formal side. If they fail, an error is detected
(either in the translation, the invariants or the queries implementations).

4.5 Formal verification

An Acceleo3 module generator (named Fiacre2fcr . acceleo) produces
the Fiacre specification enriched with generated Fiacre properties.

The complete Fiacre specification (Process.fcr in the Fig. 4) con-
taining both the Fiacre model specification and the properties to check
represents the verification entry point shown in the Formal verification

3 http://www.acceleo.org/pages/home/en

http://www.acceleo.org/pages/home/en


level part of Fig. 4. It is translated by the Frac compiler4 (the Fiacre

compiler for the Tina toolbox) into a Timed Transition Systems (tts)
specification, the accepted input by Tina toolbox (Process.tts in Fig. 4).

This tts specification is verified using Selt5, the Tina model-checker
for a State-Event version of LTL. When the property fails, Selt generates
a counter-example as a succession of Petri net transitions. The generated
counter-example — also named scenario and verifications results — is not
easy to understand for the DSML end-user. So, we have to feedback it at
the Fiacre level so that the DSML designer can use them to generate
DSML verification results.

5 Feedback verification results

Verification results are obtained at the formal level and must be leveraged
at the DSML level. This feedback is made easier thanks to the Executable
DSML pattern [3] applied not only at the DSML level but also at the
formal one. Results at the Fiacre level are obtained by analysing textual
outputs of the Tina toolbox [16]. Xtext is used to parse textual outputs
and model transformations generate the corresponding Fiacre events
and scenarios.

Fiacre EDMM contains specific events [17]: an instance of a process
entering or leaving a state, a variable changing value, a communication
through a port.

In a previous work [18], we relied on the naming convention used when
transforming the domain model to the formal one to translate verification
results up to the DSML level. String analysis and parsing were used.
However this method is tricky and cannot be applied on more complex
DSMLs and cannot be generalized.

A more general solution consists in relying on a traceability meta-
model which connects both metamodels (theDSML and the formal level).
It corresponds to the traceability approach defined in [19]: trace informa-
tion is considered as an additional model generated when the translational
semantics is run.

5.1 DSML-Fiacre traceability links

Based on the Executable DSML pattern applied on each DSML and on
Fiacre metamodel, the DSML designer is invited to define the trace-

4 http://projects.laas.fr/fiacre/manuals/frac.html
5 http://projects.laas.fr/tina/manuals/selt.html

http://projects.laas.fr/fiacre/manuals/frac.html
http://projects.laas.fr/tina/manuals/selt.html


ability metamodel with the appropriate information in order to capture
information required to feedback verification results.

The traceability metamodel depends on the defined translational se-
mantics and what kind of information would be traced back into the
DSML level. Typically, this information consists of triggering DSML

events into the formal language.

For the xSPEM example, two kinds of events are included Start a
WorkDefinition and Finish a WorkDefinition. As shown in the previous
section, the DSML designer has mapped a workdefinition into a Fiacre

instance. Events are triggered using port signals (Start port and Finish
port).

Fig. 5 shows the traceability metamodel, xSPEM2FIACRE, inspired
from the translational semantics which links xSPEM metamodel (bot-
tom) and Fiacre one (top).

The xSPEM2Fiacre model (shown in Fig. 4 as Process.xspem2fiacre)
is conforms to this metamodel. To find back xSPEM events from Fiacre

ones, we have defined two metaclasses WDStart2Fiacre and WDFin-
ish2Fiacre that correspond to the two xSPEM events (start a workdef-
inition and finish a workdefinition). They are respectively linked to the
Start and Finish port signal statements.
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Fig. 5. Defining a traceability meta model



5.2 Feedback verification results at DSML level

The generated Fiacre scenario, Process. fcrscn in Fig. 4, (that only con-
tains Fiacre events) has to be leveraged at the DSML level, xSPEM in
our case. An xSPEM scenario only contains events which are instances of
the xSPEM’s EDMM. Obtaining xSPEM events is done from Fiacre

events thanks to the traceability links generated while the translational
semantics runs.

Fig. 5 shows the relations between the EDMMs of Fiacre and xSPEM

on the one hand (left) and their DDMMs on the other hand (right)
through the traceability metamodel (middle). Only the Synchronisation-
Event is represented because other events are not used for xSPEM. Ac-
cording to the signal and the instance of this event, the corresponding
element can be found in the traceability model, and then the workdefini-
tion identified as well as the kind of xSPEM event — either start or finish
that workdefinition. Applying our approach on xSPEM model shown in
Fig. 1 and TOCL property, negation of P1 requirement, constructs the
scenario presented in the Listing 1.1.

6 Related Work

The problem of integrating formal verification into the design of DSMLs
has been widely addressed by the MDE community. In order to tackle
property-based verification problem, authors of [20] present the Metropo-
lis design framework for embedded systems.

Their verification approach is based on formal properties specified in
Linear Temporal Logic (LTL) and Logic of Constraints (LOC). They have
different domains of expressiveness and indeed complement each other
quite well. The formal verification methodology of Metropolis consists
in translating the Metropolis specification into Promela description, and
the LTL properties are checked using the model checker Spin. Translating
verification results is done in ad hoc manner.

On the contrary, in our approach, we introduce for the DSML de-
signer a user-friendly tool, TOCL, used to ease the writing of behavioral
properties and which is also close to OCL. OCL is widely accepted as
the appropriate language to verify structural properties on models.

In [21], authors define an approach named Arcade that uses SPIN

model checker for evaluating safety and liveness properties of a Domain
Reference Architecture that is translated to Promela language. Arcade
interprets SPIN counter-example and generates an Architecture Trace
Diagram (ATD).



Nevertheless, the ATD is a graphical representation of the spin counter-
example. They do not define a high-level abstraction between model level
and formal level. In our work, we separate the two domains (DSML and
formal ones) and we hide all formal aspects by translating formal results
to domain-specific results.

Hegedüs et al. [22] propose a method to verify BPEL models. It re-
lies on a relation between elements of the source (BPEL) and the target
(Petri nets) metamodels, implemented by means of annotations in the
transformation’s source code. The authors propose a technique for the
back-annotation of simulation traces from traces generated by the model
checker to the specific animator named BPEL Animation Controller. This
approach is based on change-driven model transformations. This choice
can be a restriction for DSML designers which are not familiarized with
this specific model transformations technique.

In [23], authors introduce an algorithm requiring the DSML’s seman-
tics to be defined formally, and a relation R to be defined between states
of the DSML and states of the target language. The DSML designer must
provide as input a natural-number bound n, which estimates a difference
of granularity between the semantics of the DSML and the semantics of
the target language.

However, we don’t think that DSML designer, for who it it difficult
to use formal methods and verification, can define this important infor-
mation to feedback verification results.

The most important difference between our approach and all the pre-
viously quoted approaches is on the fact that we are defining a structured
model-based approach allowing to model different steps: defining the
model using DDMM, introducing behavioral properties using a TOCL
editor and a QDMM extension and capturing runtime information using
TM3, EDMM and SDMM extensions.

7 Conclusion

We have presented an approach to integrate verification tools on a DSML

in order to assist system designer into the verification of safety and live-
ness properties on executable models.

It has been illustrated on xSPEM as DSML and Fiacre as the
formal language. We introduce a user-friendly language, TOCL, to system
designer which allows to specify behavioral properties because it is close
to OCL. However, the use of OCL and TOCL have shown that it is still
not well suited to many system designers. Therefore, we might need to



investigate a more suited user-oriented language for expressing behavioral
constraints. So, TOCL can be considered as an intermediate language
between LTL and the high-level property language.

To ease feedback verification results, relying on the executable DSML

pattern and traceability models, we assist DSML designer to define a
traceability meta-model used after to define the backward transformation
to feedback verification results at the DSML level.

This approach has been designed for domain specific languages. It is
currently being experimented for several significantly different DSMLs.
But, it is still to be shown if it can scale up to more complex languages
or to languages combining different models of computation.

As future works, we propose to further facilitate the DSML designer
task by providing automatically the backward transformation which feed-
backs verification results into the DSML level. It can be inspired from
the previously defined translational semantics.
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