133 research outputs found
A weighted reduced basis method for parabolic PDEs with random data
This work considers a weighted POD-greedy method to estimate statistical
outputs parabolic PDE problems with parametrized random data. The key idea of
weighted reduced basis methods is to weight the parameter-dependent error
estimate according to a probability measure in the set-up of the reduced space.
The error of stochastic finite element solutions is usually measured in a root
mean square sense regarding their dependence on the stochastic input
parameters. An orthogonal projection of a snapshot set onto a corresponding POD
basis defines an optimum reduced approximation in terms of a Monte Carlo
discretization of the root mean square error. The errors of a weighted
POD-greedy Galerkin solution are compared against an orthogonal projection of
the underlying snapshots onto a POD basis for a numerical example involving
thermal conduction. In particular, it is assessed whether a weighted POD-greedy
solutions is able to come significantly closer to the optimum than a
non-weighted equivalent. Additionally, the performance of a weighted POD-greedy
Galerkin solution is considered with respect to the mean absolute error of an
adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure
Model Reduction for Multiscale Lithium-Ion Battery Simulation
In this contribution we are concerned with efficient model reduction for
multiscale problems arising in lithium-ion battery modeling with spatially
resolved porous electrodes. We present new results on the application of the
reduced basis method to the resulting instationary 3D battery model that
involves strong non-linearities due to Buttler-Volmer kinetics. Empirical
operator interpolation is used to efficiently deal with this issue.
Furthermore, we present the localized reduced basis multiscale method for
parabolic problems applied to a thermal model of batteries with resolved porous
electrodes. Numerical experiments are given that demonstrate the reduction
capabilities of the presented approaches for these real world applications
A Two-Step Certified Reduced Basis Method
In this paper we introduce a two-step Certified Reduced Basis (RB) method. In the first step we construct from an expensive finite element “truth” discretization of dimension N an intermediate RB model of dimension N≪N . In the second step we construct from this intermediate RB model a derived RB (DRB) model of dimension M≤N. The construction of the DRB model is effected at cost O(N) and in particular at cost independent of N ; subsequent evaluation of the DRB model may then be effected at cost O(M) . The DRB model comprises both the DRB output and a rigorous a posteriori error bound for the error in the DRB output with respect to the truth discretization.
The new approach is of particular interest in two contexts: focus calculations and hp-RB approximations. In the former the new approach serves to reduce online cost, M≪N: the DRB model is restricted to a slice or subregion of a larger parameter domain associated with the intermediate RB model. In the latter the new approach enlarges the class of problems amenable to hp-RB treatment by a significant reduction in offline (precomputation) cost: in the development of the hp parameter domain partition and associated “local” (now derived) RB models the finite element truth is replaced by the intermediate RB model. We present numerical results to illustrate the new approach.United States. Air Force Office of Scientific Research (AFOSR Grant number FA9550-07-1-0425)United States. Department of Defense. Office of the Secretary of Defense (OSD/AFOSR Grant number FA9550-09-1-0613)Norwegian University of Science and Technolog
Interpolation with uncoupled separable matrix-valued kernels
In this paper we consider the problem of approximating vector-valued functions over a domain Ω. For this purpose, we use matrix-valued reproducing kernels, which can be related to Reproducing kernel Hilbert spaces of vectorial functions and which can be viewed as an extension of the scalar-valued case. These spaces seem promising, when modelling correlations between the target function components, as the components are not learned independently of each other. We focus on the interpolation with such matrix-valued kernels. We derive error bounds for the interpolation error in terms of a generalized power-function and we introduce a subclass of matrix-valued kernels whose power-functions can be traced back to the power-function of scalar-valued reproducing kernels. Finally, we apply these kind of kernels to some artificial data to illustrate the benefit of interpolation with matrix-valued kernels in comparison to a componentwise approach
Feedback control of parametrized PDEs via model order reduction and dynamic programming principle
In this paper, we investigate infinite horizon optimal control problems for parametrized partial differential equations. We are interested in feedback control via dynamic programming equations which is well-known to suffer from the curse of dimensionality. Thus, we apply parametric model order reduction techniques to construct low-dimensional subspaces with suitable information on the control problem, where the dynamic programming equations can be approximated. To guarantee a low number of basis functions, we combine recent basis generation methods and parameter partitioning techniques. Furthermore, we present a novel technique to construct non-uniform grids in the reduced domain, which is based on statistical information. Finally, we discuss numerical examples to illustrate the effectiveness of the proposed methods for PDEs in two space dimensions
Greedy kernel methods for center manifold approximation
For certain dynamical systems it is possible to significantly simplify the study of stability by means of the center manifold theory. This theory allows to isolate the complicated asymptotic behavior of the system close to a non-hyperbolic equilibrium point, and to obtain meaningful predictions of its behavior by analyzing a reduced dimensional problem. Since the manifold is usually not known, approximation methods are of great interest to obtain qualitative estimates. In this work, we use a data-based greedy kernel method to construct a suitable approximation of the manifold close to the equilibrium. The data are collected by repeated numerical simulation of the full system by means of a high-accuracy solver, which generates sets of discrete trajectories that are then used to construct a surrogate model of the manifold. The method is tested on different examples which show promising performance and good accuracy
Reduced basis isogeometric mortar approximations for eigenvalue problems in vibroacoustics
We simulate the vibration of a violin bridge in a multi-query context using
reduced basis techniques. The mathematical model is based on an eigenvalue
problem for the orthotropic linear elasticity equation. In addition to the nine
material parameters, a geometrical thickness parameter is considered. This
parameter enters as a 10th material parameter into the system by a mapping onto
a parameter independent reference domain. The detailed simulation is carried
out by isogeometric mortar methods. Weakly coupled patch-wise tensorial
structured isogeometric elements are of special interest for complex geometries
with piecewise smooth but curvilinear boundaries. To obtain locality in the
detailed system, we use the saddle point approach and do not apply static
condensation techniques. However within the reduced basis context, it is
natural to eliminate the Lagrange multiplier and formulate a reduced eigenvalue
problem for a symmetric positive definite matrix. The selection of the
snapshots is controlled by a multi-query greedy strategy taking into account an
error indicator allowing for multiple eigenvalues
Model Order Reduction for Rotating Electrical Machines
The simulation of electric rotating machines is both computationally
expensive and memory intensive. To overcome these costs, model order reduction
techniques can be applied. The focus of this contribution is especially on
machines that contain non-symmetric components. These are usually introduced
during the mass production process and are modeled by small perturbations in
the geometry (e.g., eccentricity) or the material parameters. While model order
reduction for symmetric machines is clear and does not need special treatment,
the non-symmetric setting adds additional challenges. An adaptive strategy
based on proper orthogonal decomposition is developed to overcome these
difficulties. Equipped with an a posteriori error estimator the obtained
solution is certified. Numerical examples are presented to demonstrate the
effectiveness of the proposed method
Comparison of some Reduced Representation Approximations
In the field of numerical approximation, specialists considering highly
complex problems have recently proposed various ways to simplify their
underlying problems. In this field, depending on the problem they were tackling
and the community that are at work, different approaches have been developed
with some success and have even gained some maturity, the applications can now
be applied to information analysis or for numerical simulation of PDE's. At
this point, a crossed analysis and effort for understanding the similarities
and the differences between these approaches that found their starting points
in different backgrounds is of interest. It is the purpose of this paper to
contribute to this effort by comparing some constructive reduced
representations of complex functions. We present here in full details the
Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM)
together with other approaches that enter in the same category
Building nonparametric -body force fields using Gaussian process regression
Constructing a classical potential suited to simulate a given atomic system
is a remarkably difficult task. This chapter presents a framework under which
this problem can be tackled, based on the Bayesian construction of
nonparametric force fields of a given order using Gaussian process (GP) priors.
The formalism of GP regression is first reviewed, particularly in relation to
its application in learning local atomic energies and forces. For accurate
regression it is fundamental to incorporate prior knowledge into the GP kernel
function. To this end, this chapter details how properties of smoothness,
invariance and interaction order of a force field can be encoded into
corresponding kernel properties. A range of kernels is then proposed,
possessing all the required properties and an adjustable parameter
governing the interaction order modelled. The order best suited to describe
a given system can be found automatically within the Bayesian framework by
maximisation of the marginal likelihood. The procedure is first tested on a toy
model of known interaction and later applied to two real materials described at
the DFT level of accuracy. The models automatically selected for the two
materials were found to be in agreement with physical intuition. More in
general, it was found that lower order (simpler) models should be chosen when
the data are not sufficient to resolve more complex interactions. Low GPs
can be further sped up by orders of magnitude by constructing the corresponding
tabulated force field, here named "MFF".Comment: 31 pages, 11 figures, book chapte
- …
