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Abstract
In this paper, we investigate infinite horizon optimal control problems for
parametrized partial differential equations. We are interested in feedback control via
dynamic programming equations which is well-known to suffer from the curse of
dimensionality. Thus, we apply parametric model order reduction techniques to con-
struct low-dimensional subspaces with suitable information on the control problem,
where the dynamic programming equations can be approximated. To guarantee a low
number of basis functions, we combine recent basis generation methods and param-
eter partitioning techniques. Furthermore, we present a novel technique to construct
non-uniform grids in the reduced domain, which is based on statistical information.
Finally, we discuss numerical examples to illustrate the effectiveness of the proposed
methods for PDEs in two space dimensions.

Keywords Dynamic programming principle · Semi-Lagrangian schemes ·
Hamilton-Jacobi-Bellman equations · Optimal control · Model reduction ·
Reduced basis method
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1 Introduction

Optimal control problems are challenging tasks with a huge impact in real-life appli-
cations. The overall goal of control is to modify the behavior of dynamical systems
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through an external source, referred to as the control, chosen such that we are able
to steer the solution trajectory to desired configurations or to achieve certain stabil-
ity and performance goals. The field of open-loop PDE constrained optimal control
is a quite “classical” area with plenty of progress both in theoretical and algorithmi-
cal aspects. We refer to the monographs [24] and [38] as some general references.
Based on a mathematical model of a system at hand, an optimal control signal can be
computed and then applied to the real system. However, hereby the optimal control
signal is precomputed and not able to react on instantaneous changes of the system
or environment. This problem is solved by closed-loop control, i.e., feedback con-
trol strategies. Thus, from an application perspective, we are in particular interested
in optimal controls which stabilize the system even under perturbations. This is a
crucial point due to errors in the measurements and the inherent non-exactness of
mathematical models of real-life applications.

In this work, we aim at the control of “parametrized” problems in feedback form,
where the parameters can describe, e.g., different material parameters, geometry
modifications, or model uncertainties. Usually, one is interested in solving control
problems for many different parameters, e.g., in parameter studies, Monte-Carlo sim-
ulations, or real-time parameter updates. This is often referred to as “multi-query”
scenarios.

A general framework for feedback control has been introduced by Bellman in [10]
in the 1950s via the Dynamic Programming Principle (DPP) which provides an effi-
cient tool for the computation of the so-called value function, which is an important
ingredient for feedback control. This approach is rather general and includes dif-
ferent optimal control problems such as, e.g., the minimum time problem, and the
discounted infinite horizon control problem. The knowledge of the value function
provides plenty of information on the control problem. Among others, we are able to
compute an optimal policy for different initial conditions and/or under perturbation
of the dynamical system. This is a huge advantage with respect to the more popular
approach based on an open-loop strategy.

However, the method requires the solution of a non-linear partial differential equa-
tion (PDE), e.g., the Hamilton–Jacobi–Bellman (HJB) equation, whose dimension
corresponds to the dimension of the underlying control problem (see, e.g., [8]). Due
to the non-linearity of the HJB equation, it is usually not possible to derive analytical
solutions. Thus, it is crucial to investigate numerical algorithms to build approxi-
mations of the value functions. Unfortunately, classical numerical methods suffer
from the so-called curse of dimensionality. Although theoretical results hold true in
any dimension, the computational approximation constitutes the bottleneck of this
approach.

Many numerical methods deal with the approximation of the solution to the HJB
equation, such as finite volume, finite element, and finite difference methods. We
refer to the monograph [18] and the references therein for an extensive presentation of
suitable numerical methods. Recently, new techniques such as radial basis functions
(e.g., [26, 35]), sparse grid methods (e.g., [19]), and a tree structure algorithm ([3])
have been investigated for HJB equations.
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In the current work, we will deal with semi-Lagrangian (SL) schemes which pro-
vide stable approximations of the value functions even for coarse discretizations.
We make use of accelerated iterative schemes based on the fixed point iteration
introduced in [2] where a smart coupling between a value iteration (see, e.g.,
[8, Appendix A]) scheme and policy iteration (see, e.g., [13]) can drastically decrease
the computational time to determine the numerical approximation.

Due to memory limitations, we are typically able to approximate HJB equations
only up to a relatively low dimension of say 4 − 5 dimensions, with a SL scheme,
which is a big restriction in applications since the spatial dimension of the HJB
equation is the same as the state dimension of the dynamical system. For instance,
semi-discretizations of PDEs lead to a very large number of ordinary differential
equations (ODEs) which makes this approach not feasible since the dimension can
easily have n � 10, 000 states or more, which would lead to memory requirements
of the order of O(1/hn), where h is a discretization parameter, for example the
grid-width of a uniform grid.

One way to overcome these difficulties for PDE-related applications is to apply
model order reduction (MOR) to the dynamical systems in the first place. MOR
methods (see, e.g., [11] and the references therein) are (typically) projection-based
methods that have been successfully applied to different problems such as opti-
mization and many-query problems to reduce the number of degrees of freedom of
the problem and to obtain surrogate models that represent the full-dimensional and
expensive model accurately. Although a detailed description of model reduction tech-
niques goes beyond the scope of this work, we want to mention proper orthogonal
decomposition (POD, see [21]) and balanced truncation (BT, see [6]) as two of the
most popular techniques for the reduction of dynamical systems. POD is a rather gen-
eral method, which is based on a Galerkin projection of the dynamical system onto
a space whose basis functions are built upon snapshots of the system state. Instead,
BT is based on a Petrov-Galerkin projection, where the basis functions are obtained
by solving two Lyapunov equations involving the system matrices. By construction,
POD is particularly suitable to approximate trajectories, and BT for the approxima-
tion of the system’s input/output behavior. The reduced basis (RB) approach deals
with parametric problems based on greedy algorithms (see, e.g., [22, 32]). In this
work, we mainly focus on the latter approach.

The POD method has been coupled with the HJB equations in the pioneering
paper studies [7, 30, 31] to compute feedback controls for high-dimensional prob-
lems including both linear and non-linear problems. Other features of the method
have been investigated such as a priori error estimates [4] and the chattering of the
feedback control [2]. Other model reduction methods have been coupled with the
HJB approach, such as BT [27] and more recently a comparison of reduced order
modeling (ROM) techniques has been conducted in [5]. For the sake of completeness,
we would like to mention that BT has been applied to the Linear Quadratic Gaus-
sian (LQG) problems which involves the solution of two Algebraic Riccati Equations
to obtain a robust control for linear models (see, e.g., [12, 14]). Other approaches
for the control of PDEs via the DPP deal with sparse grids for linear problems (see,
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e.g., [19]) and spectral elements for unconstrained controls (see, e.g., [28]). In con-
trast, the SL method is rather general and includes control constraints and non-linear
dynamical systems. As already mentioned, the focus of this work is the computation
of feedback control functions for parametrized PDEs via the HJB equation coupled
with MOR techniques. To the best of our knowledge, this approach has not been
investigated yet. For completeness, we want to mention some references on apply-
ing MOR in classical open-loop optimal control, in particular POD-based approaches
have been presented in, e.g., [33, 39], and parametric settings in, e.g., [15, 29]. In con-
trast to these, in the current paper, we aim at closed-loop feedback control. In order to
tackle this problem, we propose a complete workflow for the coupling of non-linear
feedback control via HJB equations and MOR. While several single methodologi-
cal ingredients of our scheme may be well known, the overall combination of those
techniques is to be understood as the main contribution of the current paper. We
also remark that MOR is extremely necessary for the feasibility of the problem. This
means that in contrast to other MOR methods, the purpose of the approach is not
acceleration of an existing scheme, but enabling feasability of HJB-based feedback-
control for parametric PDEs.
Starting from a general problem formulation, we first make use of recent ideas
[5, 36] to project the control problem onto low-dimensional subspaces. Faced with
parameter-dependent problems and with the requirement of very low-dimensional
subspaces, we employ adaptive parameter partitioning techniques to reach spaces
of dimension, say, maximum 5. For the actual numerical approximation, we
employ the SL scheme for which a grid in the reduced space is required. To
this end, we introduce a novel idea based on statistical assumptions on the high-
dimensional system that enables data-driven approximation of the relevant part of
the reduced space which is then covered by a grid. Finally, an efficient offline-
online splitting is introduced to enhance and accelerate the overall procedure.
In particular, we take advantage of the so-called value iteration (VI) scheme to
precompute the value function in the barycenter of each parameter subregion in
the offline phase and then switch, in the online phase, to the policy iteration
(PI) method using the precomputed information on the value function as initial
guess. This turns out to be a very efficient method as discussed in the numerical
tests.

To summarize, the novelties in this paper are the following: (i) We consider a
novel problem type by the presence of parameters for HJB-based non-linear feed-
back control problems. Further, several methodological ingredients emerge, namely
(ii) the use of basis functions which do not depend on any control input, (iii) an auto-
matic way to generate the domain for the reduced HJB equation, and (iv) an efficient
offline-online scheme.

To set the paper into perspective, we recall the DPP approach and its numerical
approximation in Section 2. Section 3 focuses on MOR for the HJB equation and all
the building blocks for our approach. Finally, numerical experiments are presented in
Section 4 with focus on the control of two-dimensional unsteady PDEs. Conclusions
and future directions are discussed in Section 5.
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2 Numerical methods for dynamic programming equations

In this section, we recall the basic results for the numerical approximation of the
HJB equations, additional details can be found in, e.g., [8] and [18]. Consider a
continuous-time, parametric optimal control problem of the form:

min
u ∈U

Jx(u; μ), with Jx(u; μ) :=
∫ ∞

0
g(y(s), u(s); μ) e−λs ds

subject to ẏ(t; μ) = f (y(t), u(t); μ), y(0; μ) = x, (1)

with system state y(t; μ) in R
n for t ≥ 0, an initial state x ∈ R

n and a control signal
u ∈ U with

U ≡ {u : [0, ∞) → U,measurable},
where U is a compact subset of Rm of admissible control values and λ > 0 is the dis-
count factor. We consider the dynamics and the cost functional to be parametrized by
a parameter vector μ ∈ P ⊂ R

q , where P is a bounded set of admissible parameters.
The following statements and definitions are to be understood to hold for any μ ∈ P .
We assume that the running costs g(·, ·; μ) and the dynamics f (·, ·; μ) are Lipschitz-
continuous functions in the first two variables. Under rather general assumptions,
the existence and uniqueness of solutions to the optimal control systems are guaran-
teed (see, e.g., [8]). A crucial tool in feedback control is the value function, which
provides the minimum value of the cost functional at each point in the state space
x ∈ R

n. For parametric problems we define it as

v : Rn × P → R, v(x; μ) := inf
u∈U

Jx(u; μ), (2)

and its characterization through the DPP for τ > 0

v(x; μ) = inf
u∈U

{∫ τ

0
g(yx(t, u; μ), u(t); μ)e−λt dt + v(yx(τ, u; μ), u; μ)e−λτ

}
,

(3)
where we denote by yx(t, u; μ) the state of the system at time t for the control signal
u ∈ U and parameter μ, starting at the initial condition y(0; μ) = x. We note that we
use the subscript x in yx whenever we want to emphasize the dependence on the ini-
tial condition x. The above characterization can, under certain regularity assumptions
on the value function, be used to derive the HJB equation:

λv(x; μ) + sup
u∈U

{−f (x, u; μ) · ∇v(x; μ) − g(x, u; μ)} = 0, x ∈ R
n, (4)

where ∇ denotes the gradient with respect to x from which the value function can
be computed as the unique viscosity solution. We refer to [8] for more details about
existence and uniqueness of the value function. The knowledge of the value function
allows the computation of the feedback control as follows:

u∗(x; μ) = min
u∈U

{f (x, u; μ) · ∇v(x; μ) + g(x, u; μ)}.
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Next, we derive a numerical scheme to approximate the value function v(x; μ).
For that purpose, we apply an SL scheme to Equation (4) and thus first choose a
bounded domain Ω ⊂ R

n which we then discretize by a finite set of points Ξ =
{xi}i∈J with J := {1, . . . , NG} and NG = |Ξ |. We address the choice of the domain
Ω and its discretization in Section 3.3. Typically, Ξ is a grid in n dimensions and the
number of grid nodesNG grows exponentially with the dimension n such that already
coarse discretizations lead to numbers that easily exceed the memory capacities of
modern computers. This again highlights the need for MOR techniques for high-
dimensional problems. We construct a fully discrete SL scheme for the approximate
value function which follows from the DPP after temporal discretization of the ODEs
for y and a rectangular quadrature rule for the cost functional

V (xi; μ) = min
u ∈U

{e−λ�t I1[V ](xi +�tΦ(xi, u; �t, μ))+�t g(xi, u; μ)}, i ∈ J (5)

Here, V (xi; μ) is the approximate value for v(xi; μ) for the nodes of the grid Ξ , the
constant �t > 0 denotes the time-step that is used for the temporal discretization,
and Φ is the increment function and includes, for instance, implicit or explicit Euler
schemes. Here, I1[V ] denotes a first-order interpolant of the discrete value function
V , e.g., a piece-wise multi-linear interpolation. This is necessary, because the point
xi + �tΦ(xi, u; �t, μ) is usually not a node of the state space grid. Finally, let us
exemplify how the increment function Φ, introduced in Equation (5), is chosen when
an explicit Euler scheme is performed:

Φ(x, u; �t, μ) = f (x, u; μ). (6)

We refer the reader to [18] for specific details concerning the SL schemes for HJB
equations and convergence results in L∞ valid in any dimension.

We are able to approximate a solution to Equation (4) only up to a few dimensions,
using the SL discretization with an efficient iterative solver for Equation (5). The
simplest algorithm is based on a fixed point iteration of the value function, also called
value iteration (VI):

[V (j+1)(μ)]i = S([V (j)(μ)]i ), for j = 0, 1, . . .

[S(V )]i ≡ min
u∈ U

{e−λ�t I1[V ](xi +�tΦ(xi, u; �t, μ)) + �t g(xi, u; μ)} i ∈J .

Here, we collect the nodal values in vectors V (j)(μ) ∈ R
NG , meaning [V (j)(μ)]i ≈

V (xi; μ) where again the subscript indicates the index i ∈ J and the superscript j

denotes the iteration index. Convergence is guaranteed for any initial guess V (0) ∈
R

NG since the operator S : RNG → R
NG is a contraction mapping (see, e.g., [17]).

Although being simple and reliable, this algorithm is computationally demanding and
slow when fine grids are considered.

A more efficient formulation is the so-called policy iteration algorithm (PI, see,
e.g., [25, 34]), which starting from an initial guess u(0) ∈ UNG of the control at every
node, performs the following iterative procedure for i ∈ J

[V (j)]i = e−λ�t I1[V (j)](xi + �tΦ(xi, u
(j); �t, μ)) + �t g(xi, u

(j); μ) , (7)

[u(j+1)]i = argmin
u∈ U

{e−λ�t I1[V (j)](xi + �tΦ(xi, u; �t, μ)) + � tg(xi, u; μ)}.(8)
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In the first step of (7), the PI method consists of a linear system solve since the control
u(j) is fixed and we do not have to compute the minimization problem. Then, the
control is updated according to the value function computed in the previous step. We
iterate this process until we get the desired accuracy of the value function. It is well-
known (see, e.g., [13, 34]) that the PI algorithm has quadratic convergence provided
a good initial guess. This point is very delicate since it requires to know a reasonable
approximation of the value function. To solve this problem, we utilize an acceleration
mechanism based on a VI solution on a coarse grid, which is used to generate an
initial guess for PI on the fine grid, see also Section 3.4. This idea is based on the fact
that VI generates a fast error decay when applied over coarse meshes for any initial
guess. Thus, we obtain an initial guess close to the solution and we can switch to the
PI method over a fine grid, which then converges fast. Therefore, the algorithm is a
way to enhance PI with both efficiency and robustness features. We refer to [1] for
a detailed description of the algorithm. Finally, we note that in both algorithms, we
penalize the value function outside of the numerical domain to impose artificial state
constraints boundary conditions as proposed in [17].

The main advantage of the DPP approach presented in this section is the possibility
to have a synthesis of feedback controls: Once the value function is computed, the
approximated optimal control for a point x ∈ R

n in the state space is obtained by:

u∗(x) = argmin
u ∈ U

{e−λ�t I1[V ](x + �tΦ(x, u; �t, μ)) + � tg(x, u; μ)}.

For the implementation of this feedback control, a direct search for the minimum can
be performed if U contains a finite number of control values. In other scenarios, an
efficient minimization algorithm can be employed.

3 Framework for parametric HJB equations and feedback control

We now provide details about the use of MOR in the context of DPP in Section 3.1.
In particular, we propose a complete and automatic strategy to deal with non-linear
parametric feedback control problems via MOR and DPP. From a computational
point of view, we also show how the procedure can be implemented efficiently by
employing an offline-online splitting of the whole workflow. The overall picture of
the procedure is summarized in Fig. 1.

The first step according to Fig. 1 is an adaptive basis generation. By this, we aim
at constructing suitable low-dimensional subspaces onto which we project the high-
dimensional control problem. Details about this step are explained in Section 3.2.
For the numerical approximation of the value function of the so-obtained low-
dimensional control problems, we perform an SL scheme. To this end, we have to
prescribe a finite computational domain on which the SL scheme can be applied. To
obtain knowledge about this domain, we propose to make use of a data-driven method
to gather statistical information about the distribution of the reduced coordinates, see
Section 3.3. The actual calculation of the value function is then performed in two
steps: In a precalculation step, we employ a VI scheme to get coarse approximations
of the value functions in each parameter subregion, see Section 3.4.1. Furthermore,
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Fig. 1 The workflow from a given parametric control problem towards the online approximation of the
value function and feedback control

we precompute several expensive quantities and store them for a later reuse. This
concludes the offline step. Online, given a parameter from the parameter domain, we
refine the initial guess of the value function from the offline phase with a PI algo-
rithm, see Section 3.4.2. Based on the refined value function, we then define the
feedback control that is used to control the full dynamical system. In what follows,
we discuss in detail each of the ingredients in Fig. 1.

3.1 Projection-based approximation of the HJB equation

The focus of this section is to establish a coupling between MOR and the HJB
approach, as initially proposed in [30] for the non-parametric case. The need of MOR
is crucial when dealing with high-dimensional problems, such as discretized PDEs,
since the curse of dimensionality prohibits a direct solution of the HJB equations in
higher dimensions. We apply model reduction for the dynamical system to obtain a
reduced system whose dimension then allows to approximate the HJB equation. The
ROM is based on projecting the non-linear dynamics onto a low �-dimensional sub-
space V ⊂ R

n that contains the relevant information about the dynamics y(t; μ).
We equip the space V with an orthonormal basis, given by the columns in the matrix
Ψ ∈ R

n×�, which will be specified in the following section. We then approximate the
full state vector by the linear combination of basis vectors, i.e., y(t; μ) ≈ Ψ y�(t; μ)

where y� : [0, ∞) → R
� are the so-called reduced coordinates. Plugging this
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ansatz into the dynamical system and requiring a Galerkin condition, we obtain an
ODE-system of dimension �

ẏ�(t; μ) = Ψ T f (Ψ y�(t), u(t); μ), t > 0,

y�(0; μ) = Ψ T x. (9)

The procedure presented above is a generic framework for MOR for dynamical
systems. We note that it is possible to extend the whole procedure performing a
Petrov-Galerkin projection and we refer to [5] for a detailed description of the
method. It is clear that the quality of the approximation highly depends on the
reduced space V , i.e., on the chosen basis Ψ . In particular, the dynamical system
(9) should capture sufficient information to allow for accurate approximations of the
closed-loop behavior for any desired initial state.

To ease the notations, we introduce abbreviations for the reduced quantities. The
initial value will be denoted by x� := Ψ T x whereas the projected dynamical system
and the reduced running cost function are given as

f �(y�(t; μ), u(t); μ) := Ψ T f (Ψy�(t; μ), u(t); μ),

g�(y�(t; μ), u(t); μ) := g(Ψy�(t; μ), u(t); μ).

In the general projection framework above, we define the optimal control problem
for the projected system:

inf
u∈U

J �
x�(u; μ) := inf

u∈U

∫ ∞

0
g�(y�(t; μ), u(t); μ)e−λt dt, (10)

s.t. ẏ�(t; μ) = f �(y�(t; μ), u(t); μ), t > 0,

y�(0; μ) = x�. (11)

As in the full-dimensional case, we define the value function for the reduced system

v�(x�; μ) := inf
u∈U

J �
x�(u; μ),

which satisfies the reduced HJB equation which is now �-dimensional and feasible
for numerical treatment as long as the dimension is sufficiently small, e.g., � ≤ 5

λv�(x�; μ) + sup
u∈U

{−f �(x�, u; μ) · ∇x�v
�(x�; μ) − g�(x�, u; μ)} = 0, x� ∈ R

�.

(12)
In [4], the authors proved existence and uniqueness of the reduced dynamics f �.
Similarly, one can prove that the reduced HJB equation (12) admits a unique viscosity
solution as the original problem since it is obtained by orthogonal projection.

The overall idea is now to replace the high-dimensional value function v(x; μ) by
its reduced counterpart v�(x�; μ). Furthermore, we make use of the reduced value
function and define the following approximated feedback law, which is essentially the
control law from the full-dimensional system, where the value function is replaced
by the low-dimensional approximation:

u�(x) = min
u∈U

{f (x, u; μ) · ∇v�(x�; μ) + g(x, u; μ)}. (13)

In Section 4, we will show the quality of the feedback control, when applied to the
full-dimensional system.
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To obtain computationally efficient schemes, we assume that the dynamics has a
linear dependence with respect to the control u

f (y, u; μ) = f y(y; μ) + f u(y; μ)u, (14)

and that the cost functional has a quadratic form

g(y, u; μ) = yT Q(μ)y + uT R(μ)u, (15)

where Q(μ) ∈ R
n×n is symmetric positive semidefinite and R(μ) ∈ R

p×p is
symmetric positive definite.

3.2 Basis generation algorithm

Let us now provide more information about the computation of the basis functions
Ψ . Since our numerical schemes are limited to a very low number of basis functions,
the quality of the basis is of utmost importance. In [5], a comparison for different
basis generation techniques in the context of feedback control via the HJB equation is
performed in the non-parametric context. It turns out that classical but straightforwad
approaches such as POD or BT do not necessarily yield satisfying results. For POD,
this is due to the fact that its focus is on providing surrogate models for the dynam-
ics and not for feedback control. For BT, the suboptimality is based on its focus to
approximate well input-output transfer, but is not aiming to minimize some optimal
control functional. A more robust approach for linear control problems is based on
the LQG. The coupling with BT has been studied in [12, 14]. A different approach
that is based on the explicit form of the value function in the linear case is introduced
in [5].

Finding the basis functions is of course rather hard for arbitrary non-linear con-
trol problems. Unlike for linear problems with quadratic cost functionals where the
value function can be computed explicitly by solving an Algebraic Riccati Equation
(ARE), the value function for non-linear problems is in general not known analyti-
cally. However, we can always obtain local information about the basis by linearizing
the control problem around a constant point of interest (ȳ, ū):

f (y, u; μ) ≈ fy(ȳ, ū; μ)(y − ȳ) + fu(ȳ, ū; μ)(u − ū).

In the sequel, we will typically choose (ȳ, ū) = 0, since we are interested in steering
the system to the origin and hence can write the linearized state equation as

ẏ = A(μ)y + B(μ)u,

with matrices A(μ) := fy(ȳ, ū; μ) ∈ R
n×n, B(μ) := fu(ȳ, ū; μ) ∈ R

n×p.
Solving the linearized optimal control problem can be easily done by means of

the associated discounted ARE for the positive semi-definite and stabilizing solution
P(μ) ∈ R

n×n

R(P (μ)) :=
(

A(μ) − λ

2
In

)T

P (μ) + P(μ)

(
A(μ) − λ

2
In

)
−

P(μ)B(μ)R(μ)−1B(μ)T P (μ) + Q(μ) = 0, (16)
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where R(P (μ)) is the residual of the ARE, and Q(μ) and R(μ) are given accord-
ingly in (15). We refer to [18] for a detailed derivation of the ARE under the presence
of the discount factor λ. The idea is now to build basis functions upon the information
on the value function from the linearized control problem for varying parameters,
although it is just an approximation to the true and unknown value function. For that
purpose, we adopt the low-rank factor greedy (LRFG) procedure from [36] to our
setting. For the sake of completeness, we summarize the method in Algorithm 1. It
runs in a typical greedy structure: An error indicator is minimized over a suitably
large but finite training set Ptrain ⊂ P of parameters by adding information about the
worst-approximated true solution in each iteration. In line 4 of the algorithm, only
the part which is not yet captured in the basis is considered by orthogonalization and
in step 5, the remaining information is compressed via an additional POD, where
we prescribe a desired level 1 − εPOD of POD-energy for some εPOD ∈ [0, 1] that
should be captured by the basis (see, e.g., [21, 36] for details). The algorithm is a
variant of the POD-Greedy procedure, which is known to be quasi-optimal for MOR
of parametric unsteady PDEs (see, e.g., [22]). We choose the error indicator as the
normalized residual norm �(μ) := ‖R(P̂ (μ))‖F /‖Q(μ)‖F where P̂ (μ) ∈ R

n×n is
the approximate solution to the ARE for the current basis. We note that the error indi-
cator proposed here was certified in [36]. This procedure might be expensive since it

Algorithm 1 LRFG algorithm for the calculation of the projection basis.

Require: Parameter training set Ptrain ⊂ P , desired greedy tolerance ε, POD
tolerance εPOD, initial basis Ψ

1: while maxμ∈Ptrain �(μ, Ψ ) > ε do
2: μ∗ := argmaxμ∈Ptrain

�(μ)

3: Solve ARE for P(μ∗)
4: P⊥ := (I − Ψ Ψ T )P (μ∗)
5: Ψ := [Ψ,POD(P⊥, εPOD)]
6: end while

requires the solution of an ARE and a subsequent SVD in each iteration. However,
by employing low-rank techniques for the solution of the large-scale AREs, both of
these tasks can be sped up substantially. We also refer the interested reader to the
recent work [37] for an in-depth discussion of projection-based model reduction for
the ARE and the link to the LQR problem. As already mentioned, the strength of this
model reduction approach relies on the fact that the basis functions contain directly
information of the value function for the infinite horizon problem. Furthermore, the
whole described technique does not depend on a particular choice of the control,
unlike POD.

By applying a grid-based scheme for the approximation of the value function, we
are restricted to a relatively low number of dimensions � for which the procedure
can be performed. Furthermore, the presence of parameters can change the control
problem significantly when going from one configuration to another. Therefore, a
basis which is able to capture information about the whole parameter domain might
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easily exceed the maximum possible dimension. To overcome this problem, we apply
an adaptive method introducing a partitioning of the parameter domainP . By running
the adaptive algorithm, the parameter domain P is split into S partitions Pi ⊂ P such
that P = ∪S

i=1Pi together with local bases Ψi, ∈ R
n×�i where Ψi are the �i basis

functions computed for the partition Pi for i = 1, . . . , S.
The idea behind the partitioning is that we want to deal with a prescribed max-

imum number �max of basis functions for each subregion of the parameter domain
to guarantee the computational feasibility of the reduced control problem (11) and,
simultaneously guarantee a certain accuracy ε. The algorithm works as follows:
Given a partitioning {Pi}Si=1 which initially is set to P , we run the basis genera-
tion on each parameter subset Pi independently. Two cases can occur: Either the
desired accuracy is reached within the prescribed number of basis functions �max, or
the error indicator/the number of basis functions is too large. In the latter case, the
parameter region Pi is refined for example by bisection and the procedure is repeated
on all newly identified subregions. The method stops when the desired accuracy is
reached and the number of basis elements �max is not exceeded in each subdomain.
As stopping criterion, we also include a maximum number of refinements since
it is not always possible to reach the amount of basis functions required. In these
cases, we accept a reduced basis of lower accuracy that satisfies a strict size con-
straint �i ≤ �max. We refer to, e.g., [16, 23] and the references therein for more
details.

3.3 Data-driven approximation of the reduced domain

In this section, we provide details on the procedure to determine the domain for the
approximation of the reduced HJB equation (12). Although the reduced HJB equation
is defined on the full space R�, for numerical reasons, we have to restrict ourselves to
a bounded domain Ω� ⊂ R

� and the question arises how a reasonable choice can be
made. Note that the design of the reduced domain Ω� is also of great importance for
the application in feedback control: By applying the reduced-order feedback control
from (13), the projection Ψ T yx(t; μ) ∈ R

� of the current state of the controlled
system onto the reduced space is required and fed into the reduced value function.
Hence, in order to get accurate feedback controls, those projected vectors should
be contained in the domain Ω� where the reduced HJB equation is approximated.
Finally, the use of a domain requires to impose boundary conditions to the reduced
HJB equation. A common choice is the penalization of trajectories which exit the
domain (see, e.g., [4]).

A common approach is to choose the domain a priori of the form Ω� = [a1, b1]×
. . . × [a�, b�] where ai < bi, i = 1, . . . , � are prescribed bounds. However, it is not
clear how the values ai and bi can be chosen. In particular, in a parametric scenario,
the influence of the parameter can greatly alter the dynamics and thus the projections.

In the current work, we propose a novel strategy that makes use of statistical infor-
mation about the full and reduced coordinates. For that purpose, we assume that
the initial values of the high-dimensional problem follow a prescribed multivariate
distribution, which we abbreviate by x ∼ D where D denotes the chosen proba-
bility density. This choice is motivated by the following heuristic observation: In
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cases where the states of the discretized system represent nodal values, e.g., in a FE
scheme, the values of neighboring nodes are often of very similar magnitude. This
results from phenomena like diffusion or other types of transport of information. In
other scenarios, often statistical a priori knowledge of the states that can occur in the
application is available, e.g., typical temperatures in a heat transfer application. Note
that we have to consider some assumptions on the full states y ∈ R

n, since otherwise
their projections y� = Ψ T y can lie anywhere in R

� and the approximation may be
arbitrarily bad.

Algorithm 2 Data-driven approximation of the numerical domains.

Require: Parameter partitioning P = ∪S
i=1Pi with local bases Ψi , distribution D,

time instances T = {t0, . . . , tK}, desired number of grid nodes Hi,j .
1: for i = 1, . . . , S do
2: Choose μ∗ from Pi .
3: Y ← [yξ (tk; μ∗)]ξ∈X,tk∈T (collect snapshots).
4: Ỹ ← ΨiY .
5: for j = 1, . . . , �i do
6: hj ← approximation of distribution of j -th component.
7: Φj ← univariate grid {s1, . . . , sHi,j

} with 0 ∈ Φj and
∫ sq+1
sq

hj (s)ds
equal for q = 1, . . . , Hi,j − 1.

8: end for
9: Build non-uniform grid Ξi := Φ1 × · · · × Φ�i

.
10: end for

The idea of the proposed algorithm is to sample solutions to the high-dimensional
system for certain suitable controls and parameters and to estimate the component-
wise distribution of the projected reduced vectors. The algorithm is summarized in
Algorithm 2 and illustrated in Fig. 2. Based on the given parameter partitioning,
we loop over all S parameter regions and perform the following procedure, where i

always denotes the index of the current parameter partition: First, we pick a sample
parameter μ∗ from the i-th parameter domain, e.g., the barycenter and a set of Ntrain
initial conditions X = {ξ1, . . . , ξNtrain} with ξk ∼ D, for k = 1, . . . , Ntrain. Then

Fig. 2 The procedure for obtaining the statistical distribution and estimating the univariate distributions
(N = 15 partitions in this case)

Adv Comput Math (2020) 46: 9 Page 13 of 28 6



we simulate the (controlled) high-dimensional system with the parameter μ∗ and all
ξ ∈ X and collect the solution at time instances T in a snapshot matrix Y . The control
u∗ can for example be chosen from the linearized system for μ∗ or simply be set to
zero in case of stable systems. We then project the snapshots onto the �i-dimensional
subspace that is spanned by the basis Ψi and analyze the result componentwise: To
this end, we normalize the data and fit a Gaussian to the distribution of the values
in the reduced coordinate. From this, we get a continuous function hj : R → [0, 1]
with

∫
R

hj (s)ds = 1 which we use to construct a set of grid nodes Φj for the com-
ponent. Given a desired odd number of grid nodes Hi,j , we enforce the area under
the curve of hj to be equal between all grid nodes. By this, we ensure a distribu-
tion of the grid nodes that fits to the estimated statistical information. The final grid
Ξi for the parameter region Pi is then defined as the cartesian product of all one-
dimensional grids and consists of |Ξi | = ∏Ni

j=1 Hi,j points. A schematic drawing of
the procedure for the reduction of n = 3 to � = 2 is given in Fig. 1.

3.4 Offline-online efficient implementation of the numerical scheme

In this section, we provide some remarks about technical features of the method to
improve its computational efficiency. In particular, we will explain how to deal with
an offline-online decomposition that is often used in MOR to distinguish the first
phase characterized by potentially expensive computations to build a surrogate model
(offline stage), which enables rapid and inexpensive simulations (online stage). In the
current work, the role of model reduction is slightly different, in fact we are interested
in reducing the dimension of the dynamical systems to decrease the complexity of the
corresponding HJB equation and, therefore, to make the problem feasible. We do not
aim at real-time computations since the method will still rely on the approximation
of a high-dimensional PDE. However, by assuming a special structure of the ODE
function f and the running cost g, we can realize a speed-up since the expensive
evaluations of the non-linear function f can be shifted to the offline stage. We recall
that an offline-online decomposition, in this context, is new and we will show the
computational benefit in Section 4. We further assume that the dynamics given in
(14) satisfies the following parameter separability assumption:

f (y, u; μ) = f y(y; μ)+f u(y; μ)u =
Qy∑
q=1

Θ
y
q (μ)f

y
q (y)+

Qu∑
q=1

Θu
q (μ)f u

q (y)u, (17)

where the functions Θ
y
i , Θu

j : P → R for = 1, . . . ,Qy and j = 1, . . . , Qu are
coefficient functions depending only on the parameter μ. This structure allows for
the precomputation of most function evaluations that are needed during the online
phase.

3.4.1 Offline stage

The offline stage constitutes the building block of our approach, where most of the
quantities are precomputed and stored for any parameter configuration. It basically
consists of three parts:
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1. basis generation, including the parameter partitioning,
2. sampling of the set for the estimation of the grid in the reduced space,
3. preparatory tasks for a fast online PI, which is explained in the following.

We assume that we are given a parameter partitioningPi for i = 1, . . . , S, together
with corresponding grids generated by the procedure explained in Section 3.3. Let
us denote the corresponding grid nodes corresponding to the ith subdomain Pi as
Ξi with |Ξi | = Hi . In order to speed up the online calculations for the PI, we make
use of the special structure defined in Equation (17) and precompute all function
evaluations and their projections

f
y,�
q,i :=

[
Ψ T

i f
y
q (Ψix1), . . . , Ψ

T
i f

y
q,i(ΨixHi

)
]
, q = 1, . . . , Qy,

f
u,�
q,i :=

[
Ψ T

i f u
q (Ψix1), . . . , Ψ

T
i f u

q,i(ΨixHi
)
]
, q = 1, . . . , Qu,

where xj ∈ Ξi for j = 1, . . . , Hi and i = 1, . . . , S. Note that the precalculated
quantities are of low-dimension and can all be precomputed once in the offline phase.
Given a parameter μ, and using assumption (17) the function can be rapidly evalu-
ated on the grid nodes for this parameter by summing up the parameter-independent
quantities f

y,�
q,i and f

u,�
q,i , weighted by the corresponding coefficient functions Θ

y
q (μ)

and Θu
q (μ).

This allows us to reduce drastically the number of evaluations of the dynamical
system with powerful speed-up in both the VI and PI method since the computation
of the value functions involves several evaluations of the dynamical systems. Similar
assumptions may be posed on the cost functional. We finally note that (17) is absolute
crucial to perform fast evaluations and can be always obtained via the EIM algorithm
(see e.g. [9]).

The next step concerns the precalculation of the value function via a VI scheme.
As described in Section 2 we solve the reduced HJB equation (12) performing a
VI algorithm and then switching to a PI method to obtain fast convergence of the
method. We propose to use the VI method offline for some particular choices of
the parameter. In fact, since we act with a partition of the parameter domain we
assume that in each subregion the dynamics will not differ significantly: since the
basis generation yielded a low-dimensional basis we compute an approximation of
the value function for the barycenter of each subdomain Pi . Therefore, we obtain
accurate initial guesses for the value function and guarantee fast convergence when
switching to the PI algorithm on a finer grid. Finally, we note that at this stage we
compute the finer grid, on which we later use the PI method and evaluate all the
quantities independent from the parameter μ as e.g. f y,�

q , f
u,�
q .

3.4.2 Online stage

The precomputation in the offline stage allows us to focus on the following steps in
the online phase: Given a new parameter μ ∈ P we have to

1. identify the parameter partition Pi such that μ ∈ Pi ,
2. calculate an accurate approximation for the reduced value function v�(·; μ),
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3. define the feedback control u�(x) according to equation (13).

The first step is trivial and the last step can be readily performed once the approx-
imation v�(·; μ) is available. For the second step we run a PI algorithm starting from
the initial guess for the value function, which was calculated during the offline phase.
Note that at this point we can make use of the precalculated function evaluations
on the grid Ξi to speed up the calculation significantly. By doing this, the overall
complexity does not depend on the high-dimension n but only on the reduced dimen-
sion �i and the number of grid points in Ξi . We compute the reduced value function
v�(·; μ) satisfying (12) at each grid point x�i ∈ Ξi .

u�i (x; μ) := argmin
u∈U

{
f (x, u; μ) · ∇x�i v

�i (x�; μ) + g(x, u; μ)
}
.

We note that here we replace the high-dimensional value functional with the
reduced approximation whereas the dynamics f and the cost functional g are kept
high-dimensional due to the fact that the basis functions better describe the value
function rather than the dynamics. This strategy turns out to be more stable than using
the reduced functions f � and g�.

4 Numerical tests

We now present three examples of optimal feedback control problems, which demon-
strate the efficiency of our proposed method. The first example models a control
problem for a linear advection-diffusion equation where the true optimal feedback
control and the true value function can be computed by means of the ARE. Thus, we
are able to compare the numerical approximation obtained from our approach to the
true solution. The second example is a two-dimensional semi-linear heat equation
with a cubic non-linearity which presents an unstable equilibrium around the origin.
The control objective will be the stabilization around this point. The last example
deals with a coupled viscous Burgers system, introducing many layers of additional
complexity since the dimension of the control space is two as well as the number of
outputs. Furthermore, the equations for this scenario are described by two coupled
non-linear PDEs. The aim of the second and third example is to show that non-linear
feedback control is more efficient than a LQR controller based on the linearization
of the problem which is then plugged into the non-linear model under consideration.

To apply the workflow, we have to assume certain statistical properties of the high-
dimensional solution. Since our examples stem from semi-discretized PDEs, we can
define those properties based on the nodal values of the discretization. To this end, let
N1, . . . , Nn ∈ R

d be the coordinates of the nodes in either the FE mesh or in the FD
discretization, where d is the number of dimensions of the original PDE problem. We
then define the Gaussian distribution D := N (ν, Σ) with mean ν ∈ R

n and positive-
definite covariance matrix Σ ∈ R

n×n. To model the relationship between the nodes
we define the entries in the matrix Σ as

Σi,j = c · b(Ni)b(Nj )e
−γ ‖Ni−Nj ‖2 , i, j = 1, . . . , n, (18)
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for γ, c > 0. By changing γ , we adjust the weight of nodes that are close/far
to each other. Furthermore, through the function b : R

d → [0, ∞), we get the
possibility to put different weights on nodes that are, for example, close to the
boundary. By this, we can incorporate zero boundary conditions. Figure 3 shows
three random vectors drawn according to the distribution D for a discretization of
the interval [0, 1] into n = 20 nodes with different values for γ , different weight
functions b and ν = 0. The example shows the great flexibility in the model-
ing of the high-dimensional states. In order to support the reproducibility of the
results, we provide the MATLAB code online at https://www.ians.uni-stuttgart.de/
anm/research/software/HJBMORFeedback.zip, which is an add-on to the RBmat-
lab release 1.16.09, which can be obtained at https://www.morepas.org/software/
rbmatlab/

4.1 Test 1: two-dimensional linear advection-diffusion

The first test problem considers an optimal control scenario for a two-dimensional
linear advection-diffusion equation on the domainΩ := (0, 1)2. The parametric PDE
for this example is given by

∂tw(t, ξ ; μ)−μdiff�w(t, ξ ; μ) + a(ξ ; μ)·∇w(t, ξ ; μ) = 1ΩB
(ξ)u(t), ξ ∈Ω, t ≥0,

w(0, ξ ; μ) = w0(ξ ; μ).

The velocity is defined as the divergence-free field at ξ = (ξ1, ξ2) ∈ Ω as

a(ξ ; μ) = μadv · (−(ξ2 − 0.5), (ξ1 − 0.5))T ,

which induces a counterclockwise flow in the solution with velocity μadv as shown
in Fig. 4a. The indictor function 1ΩB

(ξ) maps the scalar control u(t) onto the domain
ΩB := [0.5, 0.9]2. The parameters in this example are (μdiff, μadv)

T ∈ P :=
[0.05, 0.1] × [2, 4]. In order to set up the control problem, we define the standard
quadratic cost functional

Jw0(u; μ) :=
∫ ∞

0
(10 s(t; μ)2 + 10−2u(t)2)e−λtdt

Fig. 3 Three random initial conditions chosen by the distribution N for different γ and b(·) choices:
γ = 1, b(x) = x (left); γ = 20, b(x) = x (middle); γ = 10, b(x) = − 1

4 + (x − 1
2 )2
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Fig. 4 Linear setting

with

s(t; μ) := 1

|ΩC |
∫

ΩC

w(t, ξ ; μ) dξ, t ≥ 0,

where λ = 10−3 and ΩC := [0.1, 0.4]2. Here, we introduce the quantity of interest
s(t; μ) that depends on the solution of the PDE w(·, ·; μ). Figure 4 b shows the out-
puts for two different configurations for the controlled and uncontrolled problem. We
see how different parameters lead to different outputs. We discretize the control prob-
lem in space by using linear finite elements on a uniform triangular grid, resulting in
an n = 676 dimensional LTI system with the scalar discretized output z

Eẏ = (μdiffAdiff − μadvAadv − Adirichlet)y + Bu, z = Cy, y(0) = x. (19)

We note that Equation (19) fits into the abstract setting shown in (1) with Q =
10CT C, R = 10−2 in (15) and that Adiff, Aadv, and Adirichlet are the discretization
of �w, ∇w and the boundary conditions, respectively. The temporal discretization is
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carried out with an implicit Euler scheme with step size �t = 10−2. In what follows,
we compare the controlled dynamics with both the HJB and LQR approach. For this
setting, it is known that the true value function is given as v(y; μ) = y(0)T P (μ)y(0)
and the true optimal control takes the form u(t) = −K(μ)y(t) with the feedback
gain matrix K(μ) := R−1BT P (μ) that depends on the solution P(μ) ∈ R

n×n of
the ARE (16). To apply the HJB approach, we restrict the control values to the finite
set of points U := {u3 | u = −2 + i�u, i = 0, . . . , 109} where �u = 4

109 , which
provides enough information to capture the LQR control values sufficiently accurate.

For all simulations, we choose initial values that are sampled via a Gaussian dis-
tribution with covariance matrix (18) with zero mean and the choices with c =
10−3, γ = 2 and b(y) := (−4(y1 − 0.5)2 + 1)(−4(y2 − 0.5)2 + 1) for the node
coordinates y := (y1, y2)

T ∈ R
2 of the FE mesh. In Fig. 4c we provide a plot of four

random initial vectors, drawn by using the distribution N (0, Σ).
According to our proposed method, we first run the adaptive LRFG algorithm to

produce a partition, P = ∪S
i=1Pi of the parameter space and corresponding local

bases. The basis generation was performed with a desired tolerance of ε = 0.9, max-
imum basis size 5 and maximum refinement level 3, resulting in a grid as indicated
in Fig. 5. The next step consists of gathering statistical information for building the
grids in each parameter subregion Pi . For that purpose, we run 100 uncontrolled sim-
ulations and collect the reduced state vectors. Figure 4 d shows the distribution of the
uncontrolled solutions for the parameter subdomain for μ = (μdiff, μadv)

T . We can
see that the distribution allows to compute a non-uniform grid which is finer where
the distribution is higher. The domain for the reduced HJB equation is computed as
discussed in Section 3.3.

Let us first investigate the performance of the HJB approach compared with the
true LQR for a fixed parameter. For this purpose, we choose the test parameter μ∗ =
(3, 0.08)T which leads to a non-trivial configuration due to the large advection and
small diffusion. We calculate a fixed basis by solving the ARE for this parameter
and using the first � = {1, 2, 3, 4, 5} left singular vectors as basis elements, see also
Section 3.2. We show the results of the controlled problem and compare the error
in the costs of the full-dimensional system steered with the LQR control and the
approximated HJB control in Table 1. For that purpose, we pick initial vectors from
a test set

X := {xi ∈ R
n|xi ∼ N (0, Σ), 1 ≤ i ≤ Ntest := 100}

Fig. 5 Test 1: Relative error of the value function computed with VI algorithm in the barycenter of each
parameter subregion in the offline stage (left), relative error of the value function computed with a PI
algorithm over the whole parameter space in the online stage (right)
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Table 1 Test 1: Approximation error for the fixed parameter μ∗ = (3, 0.08)T

HJB with 31 points HJB with 11 points

� LQR Equi. Non-equi. Equi. Non-equi.

1 1.18 · 100 1.98 · 103 1.10 · 103 2.27 · 103 1.72 · 103
2 4.34 · 101 4.69 · 102 3.92 · 102 3.86 · 102 5.87 · 102
3 2.53 · x10−1 1.79 · 10−1 1.42 · 10−1 2.36 · 10−1 1.78 · 10−1

4 2.12 · 10−2 5.25 · 10−2 2.87 · 10−2 1.02 · 10−1 6.90 · 10−2

5 2.76 · 10−3 4.23 · 10−2 2.07 · 10−2 9.27 · 10−2 5.10 · 10−2

and run the full dimensional simulations with the controls obtained by a reduced
LQR controller, e.g., the optimal control law of the reduced order LTI system, and
the approximated HJB controls. As error measurement, we define the mean relative
error in the costs of the approximated controlled systems Jx(u; μ) compared to the
true LQR cost J LQR

x (u; μ) for the initial state x as

meanx∈X
|Jx(u, μ) − J

LQR
x (u, μ)|

|J LQR
x (u, μ)|

.

The first column in Table 1 represents the dimension of the reduced problem. The
second column is the error when using the LQR controller which is obtained by solv-
ing the ARE for the reduced order system. The third, fourth, fifth, and sixth column
show the error between the true value function and value function computed by the
HJB approach with 31 points in each dimension (third and fourth column) and only
11 points (fifth and sixth column). As one can see, the reduced problem of dimen-
sion 1 and 2 is not stable for both, the LQR and HJB approach. Then increasing
the dimension �, the error decays as expected. It is also possible to see that our pro-
posed approach for the discretization of the reduced domain performs better than the
equidistant grid. This is a consequence of a finer grid around the point of interest.
We also note that our results are very close to the LQR which we consider opti-
mal here. However, it is hard to make a fair comparison between the LQR and the
HJB approach because their settings are not the same, e.g., the control space and the
numerical domain. Furthermore, the table shows the quality of the basis functions for
a strong advection dominated problem.

Then, let us draw our attention to the parametrized problem. As discussed in
Section 3.2 we have to use an adaptive strategy not to exceed a certain number of
basis functions to be able to solve the reduced HJB equation. Figure 5 shows how the
algorithm identifies subregions in the parameter space. It is somehow intuitive that
advection dominated problems need more information on the basis functions and,
therefore, further refinements towards higher μadv and lower μdiff. Here, we decide
to use � = 4 basis functions in each subregion. Finally, we show the error over the
whole parameter space in Fig. 5. In the left panel one can see the error of the value
function computed with an offline VI algorithm only in the barycenter of each subre-
gion. In the right panel, we see how the PI algorithm improves the approximation of
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the value functions. We also note that the VI is computed on a very coarse grid with 9
points in each dimension, whereas the PI algorithm is computed with 25 points. This
plot also shows the benefit of the offline-online decomposition in terms of accuracy
of the value function.

4.2 Test 2: non-linear unstable 2D heat equation

The second test problem deals with the control of a two-dimensional semi-linear
advection-diffusion equation with a cubic non-linearity on the domain Ω := (0, 1)2.
The parametric PDE is defined as

∂tw(t, ξ ; μ) − Lw(t, ξ ; μ) + μ
(
w(t, ξ ; μ) − w(t, ξ ; μ)3

) = 1ΩB
(ξ)u(t),

ξ ∈ Ω, t ≥ 0,
(20)

where the linear operatorLw := 0.2�w−∇·w describes the diffusion and advection
part. We impose homogeneous Dirichlet boundary conditions on all boundaries and
define the distributed control input via the indicator function 1ΩB

(ξ) on the domain
ΩB := [0.2, 0.6]2. The parameter μ directly influences the strength of the cubic non-
linearity and takes values in the set P := [2, 7]. We consider Q = 10, R = 1 and the
discount factor is λ = 10−3 in (15). The problem is spatially discretized by using a
finite difference scheme on a uniform grid with n = 361 nodes. The resulting system
takes the form ẏ = Ay+μF(y)+Bu, which fits to our assumption about the offline-
online splitting for the online PI. Here, the non-linearity F(y) is the component-
wise evaluation of the cubic non-linearity, e.g., (F (y))i = (yi − y3

i ). The temporal
discretization is performed by applying an explicit Euler scheme with step size �t =
10−3. Equation (20) has 3 equilibria, where w = 0 is unstable. The uncontrolled
dynamics reach either the stable equilibrium depicted in Fig. 6a or the one which
has the same structure but opposite sign. The control goal is to steer the solution
to the unstable origin and keep it there. We also note that this particular example is
not stable under finite-time open-loop control, since it is impossible to reach exactly
zero and any small deviation will lead to instabilities. We also mention that a model
predictive control approach can be applied as an alternative to our proposed method,
see e.g. [20].

Fig. 6 Test 2: Equilibrium state and control values for μ = 7
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For the sake of completeness we also show the control input in Fig. 6b computed
with the LQR, the HJB and an open-loop approach. We note that the HJB approach
agrees with the open-loop solution. However, the latter method is computationally
very expensive since we have to chose a long horizon to approximate the infinite
horizon problem and this might lead to unstable solutions. For these reasons, in what
follows, we only compare our results with the LQR routine. We recall that the LQR
controller is computed from the linearized system and plugged into the non-linear
model. In this example, we again make use of a Gaussian distribution with covariance
matrix (18) with b chosen as in the linear and with γ = 5 and c = 0.45.

We apply the procedure proposed in this paper and, therefore, start with the basis
generation. The linearization around the origin of the state equation yields an LTI
system of the form ẏ = (A + μIn)y + Bu. Applying the adaptive LRFG algorithm
for this example is not trivial because the solutions to the ARE do not have a low-
rank structure but full numerical rank. A heuristic explanation for this is that we
measure the full state in the cost functional instead of an output of interest. However,
we successfully apply the algorithm and prescribe a desired level of refinement and
run the algorithm. The algorithm then refines uniformly over the parameter space up
to the prescribed level. We run this procedure with maximum refinement levels 1 and
3, resulting in two and 16 partitions.

In Fig. 7 we show the average ratio meanx∈X J
LQR
x /JHJB

x for 100 random sam-
ples to demostrate the improvement of the HJB approach over using a classical LQR
controller obtained from the linearized system. As one can see, for small values of
the parameter μ, our results are very close to the LQR setting due to a small contri-
bution of the non-linear term. However, when increasing μ, we can observe a huge
improvement with the HJB approach. Furthermore, we see how the refined parameter
partitioning influences the accuracy of our approximations. Even though both refine-
ment levels yield the same improvement over the LQR-controlled simulation after
running an online PI, we see that we are able to reach the same quality of approxi-
mation by just using the value functions calculated offline in the barycenters for the
third refinement case. From a computational point of view, we note that the online
PI starting from the coarse approximations with one refinement level requires much
more iterations to converge.

Fig. 7 Test 2: Plot showing the improvement of the HJB approach vs. a classical LQR approach
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4.3 Test 3: burgers system

We consider the following two-dimensional coupled Burgers equations for ξ ∈ Ω :
= (0, 1)2 and t ≥ 0

∂tw(t, ξ ; μ) − σ�w(t, ξ ; μ) + (w(t, ξ ; μ) · ∇)w(t, ξ ; μ) = 1ΩB
(ξ)u(t),

w(0, ξ ; μ) = w0(ξ ; μ), (21)

for the unknown functionw(t, ξ ; μ) = (w1(t, ξ ; μ), w2(t, ξ ; μ))T ∈ R
2. We impose

homogeneous Dirichlet boundary conditions on all boundaries and choose a low
diffusion constant σ = 10−4. The indicator function 1ΩB(ξ) maps the two control
functions u(t) = (u1(t), u2(t))

T onto the subdomain which is given, component-
wise, by the ball of radius 0.2 centered in (0.5, 0.25)T , i.e. ΩB = B0.2((0.5, 0.25)T ).
We consider two partial measurements s1(t), s2(t) from the system:

s(t; μ) :=
(

μ1

∫
ΩC

w1(t, ξ ; μ)dξ, μ2

∫
ΩC

w2(t, ξ)dξ

)
, t ≥ 0, (22)

which are the average velocities of the flow in ξ1 and ξ2 direction, measured on the
subdomain ΩC := B0.2((0.5, 0.25)T ) and the parameters μ1, μ2 ∈ P := [0.01, 5]
determine weights on the individual flow components. The cost functional for the
PDE control problem is given by:∫ ∞

0
e−λt (‖s(t; μ)‖2 + ‖u(t)‖2)dt,

with the discount factor λ = 10−4. We discretize the system (21) by a finite differ-
ence scheme with an upwind flux for the convection term which leads to a system of
ODEs of dimension n = 800

ẏ(t) = f (y(t), u(t)) = σAy(t) + Bu(t) + F(x(t)), z(t; μ) = C(μ)y(t),

where the discretized output z(t) stems from a discretization of Equation (22) by
a rectangular quadrature rule. Since we consider two inputs and two outputs, the
dimension of the matrices are given as B ∈ R

n×2 and C(μ) ∈ R
2×n. As control

space we choose U = Ū2 where Ū = {u3|u = −3 + 0.1875i, i = 0, . . . , 32}}.
The temporal discretization is carried out with an explicit Euler scheme with time

Fig. 8 Test 3: Example of the dynamical behaviour of the Burgers equation. From left to right: Initial state,
controlled state and uncontrolled state at t = 2.5
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Fig. 9 Test 3: Outputs of the controlled and uncontrolled example and the distributions and grids that were
generated

step �t = 5 · 10−3. For this example, we again have to specify a distribution of
initial values of interest. In both components, we pick Gaussian distributions with a
covariance matrix given by equation (18) with c = 0.2, b = 1 and γ = 1. In the
second component we furthermore set the mean of the distribution to −1 yielding
flows which are mostly directed from top to bottom. Figure 8 shows an example
simulation, both the uncontrolled and HJB-controlled case. In Fig. 9a, we show two
outputs for two different parameter configuration.

The ROM is built upon the LRFG algorithm on the linearized equation from (21).
The algorithm yields a surrogate model of dimension � = 2 and does not perform a
parameter partitioning. We note that the linearization of (21) around the origin leads
to the heat equation which is possible to reduce with a few basis functions. For the
numerical domain of the reduced HJB equation, we compute 100 uncontrolled test
simulations where the initial values were chosen according to the distribution D.
Then, in each dimension the reduced domain is discretized with 15 points accord-
ing to the distributions that were estimated from the reduced coordinates of the test
simulations (see Fig. 9b).

We build the feedback control from the value function that was obtained from our
procedure and run test examples. Table 2 shows the improvement of our method by

Table 2 Test 3: The mean, minimum and maximum ratio JC/JUC of the uncontrolled to the controlled
cost for 10 randomly chosen initial values. Row-wise parameters: μ = (a, a) with a = 0.01, 2.5, 5

Mean Best Worst

a = 0.1 0.985 0.969 0.996

a = 2.5 0.720 0.512 0.903

a = 5 0.695 0.514 0.895
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Table 3 Test 3: The mean, minimum and maximum ratio J LQR/JUC of the uncontrolled to the controlled
cost for 10 randomly chosen initial values. Row-wise parameters: μ = (a, a) with a = 0.01, 2.5, 5

Mean Best Worst

a = 0.1 1.108 0.907 1.580

a = 2.5 0.997 0.779 1.612

a = 5 0.992 0.771 1.611

evaluating the cost functional of the controlled problem over the cost functional of
the uncontrolled problem. We ran the simulation with 10 different initial conditions
for each parameter configuration and computed the mean (Column 1), the minimum
(Column 2) and the maximum (Column 3) ratio JC/JUC of the cost functional value
for the uncontrolled dynamics JUC and controlled dynamics JC. Furthermore, in
Table 3, we provide the ratio J LQR/JUC also for the LQR approach. We, clearly,
see an improvement over the uncontrolled dynamics for increasing the weights in
the cost functional when using the HJB approach. It is noteworthy that for almost
all parameter configurations and initial values, the LQR controlled dynamics lead to
larger cost functional values than the uncontrolled dynamics, which highlights the
suboptimality of the LQR control for this scenario (see Table 2).

4.4 About the calculation times

Finally, we want to make general remarks about the CPU time, and in particular we
discuss the benefit of the offline-online decomposition. We show in Table 4 those
results. The second, third and fourth column refer to the offline costs to compute the
basis functions, the VI in the barycenter of each subregion of the parameter space and
to precompute the quantities of the affine decomposition, respectively. We then show
the time needed to compute the value function with the PI algorithm. Furthermore, we
show the benefit of the precalculation that speeds up the convergence of the method.
All numbers present average measurements over 10 parameters drawn randomly from
the parameter sets. We can observe a speed-up of factor 2 in the first case, of factor
13 in the second case and of 7 in the third case.

Table 4 Table for offline and online calculation times (in seconds) for all examples

Offline Stage Online Stage

Basis gen. VI Precalc. PI (no precalc.) PI (precalc.)

Test 1 480 72 99 21 11

Test 2 12 160 7 161 13

Test 3 52 25 0.3 4.5 0.6
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5 Concluding remarks

In this paper, we have presented a workflow for the computation of HJB based feed-
back control for parametrized PDEs. Feedback control via DPP suffers from the curse
of dimensionality and, therefore, we make use of model reduction techniques. In the
current work, we show that snapshots generated from low-rank-factors of solutions
of Algebraic Riccati Equations allow to build basis functions that approximate the
low-dimensional value function globally with respect to the parameter thanks to the
greedy parameter sampling. This approach turns out to be very general for the com-
putation of the control for arbitrary initial conditions. We have also presented an
automatic way to generate the reduced domain for the HJB equation.
As perspective we see a possible (probabilistic) analysis of the accuracy of the
procedure for determining the reduced domains. To improve the offline computa-
tional times, predictive adaptivity control may be applied for the parameter domain
partitioning, i.e., suitable early-stopping greedy procedures based on error decay
monitoring. Another possible improvement will be the use of recent techniques based
on a mesh-free approach [35] that allows to deal with problems in dimension larger
than 4 − 5 as we have in this paper.
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