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1 Introduction

Center manifold theory plays an important role in the study of the stability of
dynamical systems when the equilibrium point is not hyperbolic. It isolates the
complicated asymptotic behavior by locating the center manifold which is an
invariant manifold tangent to the subspace spanned by the eigenspace of eigenvalues
on the imaginary axis. Then, the dynamics of the original system will be essentially
determined by the restriction of this dynamics on the center manifold since the local
dynamic behavior “transverse” to this invariant manifold is relatively simple as it
corresponds to the flows in the local stable (and unstable) manifolds. In practice,
one does not compute the center manifold and its dynamics exactly since this
requires the resolution of a quasilinear partial differential equation which is not
easily solvable. In most cases of interest, an approximation of degree two or three
of the solution is sufficient. Then, the reduced dynamics on the center manifold can
be determined, its stability can be studied and then conclusions about the stability
of the original system can be obtained [1, 3, 4, 6, 8].

In this article, we use greedy kernel methods to construct a data-based approx-
imation of the center manifold. The present work is a preliminary study that is
intended to introduce our concept and algorithm, and to test it on some examples.
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2 Background

We consider a large dimensional dynamical system
x=f(x), xeD, (D

where f : D — R" is a continuously differentiable function over the domain
D C R" such that 0 € D. We are interested in the study of the behavior of the
system around an equilibrium point x € D, i.e., f(x) = 0, possibly analyzing a
smaller dimensional system.

Without loss of generality, we may assume that the equilibrium is x = 0, and,
letting L = %(x) |x=0, we can rewrite (1) as

X = f(x) =Lx + N(x),

with a suitable nonlinear component N, and denote as or (L) the set of real parts of
the eigenvalues of L. A classical result relates the stability of the equilibrium with
the spectrum of L, and in particular it is known that if L has all its eigenvalues with
negative real parts, i.e., or (L) C R, then the origin is asymptotically stable, and
if L has some eigenvalues with positive real parts, then the origin is unstable. If
instead or (L) C R<o, the linearization fails to determine the stability properties of
the origin, and thus the analysis of this situation requires to employ additional tools.

In this case, we can first use a linear change of coordinates to separate the zero
and the negative eigenvalues, i.e., we can rewrite (1) as

X =Lix 4+ Ni(x,y)
y =Ly + Na(x, y) 2

where L; € R?*4 is such that or(L1) = {0} and L, € R™ " withm :=n — d
is such that og (L) C R_g. The nonlinear functions Nj : RY x R™ — RY and
N> : R? x R™ — R™ are continuously differentiable. Intuitively, we expect the
stability of the equilibrium to only depend on the nonlinear term Ni(x, y). This
intuition turns out to be correct, and indeed it can be properly formalized by means
of the center manifold theorem.

We start by recalling a sufficient condition for the existence of a center manifold.

Theorem 1 ([1]) If N1 and N, are twice continuously differentiable and are such
that

ON; N;
Ni(0,0) =0, —(0,0)=0, —(0,0)=0, i=1,2,
ax ay

and if the eigenvalues of L1 have zero real parts, and all the eigenvalues of L, have
negative real parts, then there exists a neighbourhood 2 C R? of the origin 0 € R?
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and a center manifold h : 2 — R™ for (2), i.e., y = h(x) is an invariant manifold
for (2),1 h is smooth, and

h(0) =0, Dh(0) =0. 3)
Under the assumptions of this theorem, using (2) we deduce that / satisfies the PDE
Laoh(x) + Na(x, h(x)) = Dh(x) (L1x + Ni(x, h(x))), 4)

and the following center manifold theorem ensures that there are smooth solutions
to this PDE. Moreover, it also allows to deduce the stability of the origin of the full
order system (2) from the stability of the origin of a reduced order system called the
center dynamics.

Theorem 2 (Center Manifold Theorem [1]) The equilibria x = 0,y = 0 of the
original dynamics is locally asymptotically stable (resp. unstable) if and only if the
equilibrium x = 0 of the center dynamics (dynamics on the center manifold)

&= Lix 4 Ni(x, h(x)), (5)

is locally asymptotically stable (resp. unstable).

In particular, this result guarantees that, after solving the PDE (4), the problem
of analyzing the stability properties of the system (2) reduces to analyzing the
nonlinear stability of the lower dimensional system (5). This second problem is of
smaller dimension and thus, provided the knowledge of /, the approach is attractive
to obtain information on the system (1) via a reduced model.

Moreover, we remark that an exact knowledge of 4 is not required for this
purpose, i.e., it is sufficient to have an approximate solution of the PDE (4). Indeed,
it is frequently sufficient to compute only the low degree terms of the Taylor series
expansion of 4 around x = 0, i.e., if (-)¥] is the degree k part of the Taylor series of
h, the approximation

h(x) ~ hMx + AP ) + nB o) + 4+ a4 () (6)

is sufficient to obtain an approximation of the dynamics of order e as x| < e.
The approximation (6) can be obtained by coefficient comparison, thus rewriting

1A differentiable manifold ./ is said to be invariant under the flow of a vector field X if for x € .#,
F;(x) € # for small t > 0, where F;(x) is the flow of X.
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the PDE (4) as a set of algebraic equations as

Lzh[l] — h[I]L1
a

K21
Lon® () + NP e, i () = e <L1x1+N1[2](x,h“](x)))

21 onl2
T 9x

Lzh[S](x) + (Nz(x, h[2](x))> (x) <L1x + (Nl(x, h[2](x)))[2])

We remark that this methodology is valid for parameterized dynamical systems and
is used to study the stability of dynamical systems with bifurcations.

Nevertheless, even this approximated knowledge of / can be difficult to obtain in
practice for a general ODE. To overcome this limitation, and since an approximated
knowledge of the manifold is sufficient, our goal in this paper is to find a data-
based approximation of the center manifold. This approximation is based solely on
the knowledge of the splitting (1) and on the numerical computation of a set of
trajectories of the system, and it provides an approximation of 4 which can be used
to study the system stability.

3 Kernel Approximation

We want to build a surrogate model s, : 2 — R™ which approximates the center
manifold /4 on a suitable set £2 C R?, in the sense that sp(x) ~ h(x) forall x € £2.
This model is constructed in a data-based way, i.e., we assume some knowledge of
the map /4 on a finite set of input parameters, or training data. In practice, such values
are computed from high-fidelity numerical approximations, which will be discussed
in detail in the following.

The surrogate is based on kernel approximation, which allows the use of scattered
data, i.e., we do not require any grid structure on the set of training data. Moreover,
since the unknown function 4 is vector-valued, we employ here matrix-valued
kernels. Details on kernel-based approximation can be found e.g. in [9], and the
extension to the vectorial case is detailed e.g. in [5, 10]. We recall here only that a
positive definite matrix-valued kernel on §2 is a function K : £2 x 2 — R™*™
such that K (x, y) = K (y, x)T forall x, y € £ and [K(xi,xj)]l{vjz1 € RMNxmN g
positive semidefinite for any set {x1,...,xy} C £2 of pairwise distinct points, for
all N € N. Associated to a positive definite kernel there is a unique Hilbert space
¢ of functions £2 — R™, named native space, where the kernel is reproducing,
meaning that K (-, x)« is the Riesz representer of the directional point evaluation
8¢(f) :=al f(x),foralla € R", x € 2.

We consider here a twice continuously differentiable matrix-valued kernel k on
£2, and we use a specific functional formulation for our approximation and a specific
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cost function, in order to construct a surrogate that is well suited for the particular
approximation task.
In detail, the approximant takes the form

ni np m
1 2 2
() = > K@ x{ e + 3 Y 9P K (x, 2P

i=1 j=li=1

with centers xl.(l) e XU = {xil),...,x,(,})}, xﬁz) e X® = {xfz),...,x,(,?}

and coefficient vectors «;, f; ; € R™. Here the superscript 8 denotes that the
derivative with regards to the second kernel component is taken.

Subsequently, we assume to have a sufficient amount of data Xy+ =
{x1,...,xn+} and Yy= = {y1,..., yn+} which, for example, is generated by
running a numerical scheme to compute discrete trajectories for different initial
values (xq, yo). For this step, we need to assume that the variable splitting (2) is
known in advance. Note that this is not a severe restriction, as for a general ODE (1)
the required state transformation can be determined by eigenvalue decomposition
of L.

Observe that we do not know if a data pair (x;, y;) lies on the center manifold,
i.e. if y; = h(x;) holds. We only know that the data converges asymptotically to the
center manifold as x; — 0. Thus, an interpolation-based surrogate which merely
interpolates the data on a given subset X C X+ seems ill-suited for our purposes.
Instead we consider another set of conditions to define the approximant. First, we
still require the conditions in (3) to be satisfied by our approximation. Moreover,
for the given subsets X = {x1,...,xy} and ¥ = {y,...,yn}, we compute
our approximant by minimizing the following functional J : . — R under the
constraint s(0) = 0, Ds(0) = 0:

N
T(s) = s+ D () — yi) @i (s (xi) — o). (7)
i=1

Here w; € R™*™ is a positive definite weight matrix. It can be shown that (7) has a
unique minimizer sj, (see [11]). In particular s, and its derivative Dsj;, have the form

N+1 m

i) = > K@ xei + Y 97 K (x, 0)B1, ®)
i=1 i=1
N+1 m

Dsy(x) = Y DVK(x, xp)ei + Y DV K (x,0)8:,
i=1 i=1
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where we set x4+ := 0. The coefficient vectors «;, B; can be computed by solving

the system
A+W B\ [a) (Y
(5 e)6)- )

= (K(xi’xj))i’j e RMN+Dxm(N+1)

with

= diag (601 yees Oy ’0> € RMNADxm(N+1)
=( (Z)K(xl,0)> e RV
C = (3<1>3(2)k(o 0)) e R’

Y =0l ...,y 07 e RMVED,
Z:=0ecR"xm,

The weight matrices w; can either be chosen manually, or a regularizing function
r: 2 — R™™ can be prescribed such that w; = r(x;) is symmetric and positive
definite. In our numerical examples in Sect.4 we chose a constant regularization
function, i.e.

w; =r(x;) = Aly

for some A > 0. However, one might consider a more general approach, where the
weight increases as the data tends to the origin, i.e. w; > w; if [|x;]| < |lx;].

3.1 Greedy Approximation

If the technique of the previous section is used as it is, the surrogate (8) is given by
an expansion with N* terms, where N* is the number of points in the training set.
Therefore, the model evaluation might not be efficient enough if the model is built
using a too large dataset. Furthermore, the computation of the coefficients in (8)
requires the solution of the linear system (9), whose size again scales with the size
of the training set, and which can be severely ill-conditioned for non well-placed
points.

To mitigate both problems, we employ an algorithm that aims at selecting small
subsets Xy, Yy of points such that the surrogate computed with these sets is a
sufficiently good approximation of the one which uses the full sets. The algorithm
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selects the points in a greedy way, i.e., one point at a time is selected and added to
the current training set. In this way, it is possible to identify a good set without the
need to solve a nearly infeasible combinatorial problem.

The selection is performed using the P-greedy method of [2] applied to the kernel
K, such that the set of points is selected before the computation of the surrogate.
The number of points, and therefore the expansion size and evaluation speed, is
depending on a prescribed target accuracy &;,; > 0. For details on the method
implementation and its convergence properties we refer to [7].

4 Numerical Examples

We test now our method on three different examples. In each of them, we specify
the setting and the parameters used to build the surrogate and visualize our
approximation to the center manifold. Additionally, we compute the pointwise
residual

r(x) = Dsp(x) (L1x + Ni(x, sp(x))) — (Lasn(x) + Na(x, sp(x))) ,

which measures how well the surrogate s;, satisfies the ODE (4).

In all the three examples, the greedy algorithm is used to select a suitable subset
of the points, and in all cases the procedure is stopped with a prescribed &;,;. In the
first two examples we set &y := 10715, while &,,; := 10710 is used in the last one.

4.1 Example 1

We consider the 2-dimensional system

x=Lix+ Ni(x,y) =0+xy
] 5 (10)
y=Lyy+No(x,y) =—y+x".

We generate the training data by solving (10) with an implicit Euler scheme for
initial time f9 = 0, final time 7 = 1000 and with the time step Ar = 0.1. We
initiate the numerical procedure with initial values (xg, yp) € {£0.8} x {£0.8} and
store the resulting data pairs in X and Y after discarding all data whose x-values are
not contained in the neighborhood [—0.1, 0.1] which results in N* = 38,248 data
pairs.

We run the greedy algorithm for the kernels ki(x,y) := (1 + xy /2)4 and

ko(x,y) = e_(x_y)z/ 2. This results in the sets X; and X, which contain 14 and
6 points, respectively. The corresponding approximations s; and s, for the constant
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Fig. 1 Approximations s
and s, of the center manifold

Fig. 2 Residuals | and r; of
the center manifold
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regularization function » = 1070 are plotted in Fig. 1 over the domain [—0.1, 0.1].
The pointwise residual is depicted in Fig. 2.

4.2 Example 2

We consider the 2-dimensional system

Xx=Lix+Ni(x,y)=0—xy

¥ = Loy + Na(x,y) = —y +x* = 2y°.

1)

The training data is generated the same way as in Example 1. We again use the
kernels k1 and k. The greedy algorithm gives sets X; and X5 of size 12 and 6,
respectively. The evaluation of the approximations s; and s, over the neighborhood
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Fig. 3 Approximations s 1072
and s, of the center manifold 5
1 ——- 5
0.5
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Fig. 4 Residuals | and r; of 1077
the center manifold
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— 1)
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—0.1 —0.05 0 0.05 0.1

[—0.1, 0.1] can be seen in Fig. 3, while the respective pointwise residuals are plotted
in Fig. 4.

4.3 Example 3
We consider the (2 + 1)-dimensional system

X =Lix+ Ni(x,y) = ((1) _()1> (2) + (2§> (12)

y'szerNz(x,y)=—y—Xf—x22+y2-

We generate the training data in a similar fashion as before. We again use the
implicit Euler scheme with start time ¢ = 0, final time 7 = 1000 and with time step
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Approximation s; Approximation s,

X1 X2

0.1 —0.1

Residual rq Residual ry

1073 1072

Fig. 5 Approximations s; and s of the center manifold and corresponding residuals | and

At = 0.1. The Euler method is performed for initial data (xo, yo) € {£0.8}3 and the
resulting trajectories are stored in X and ¥, where only data with x € [—0.1, 0.1]?
was considered; this leads to N* = 78,796 data pairs. We use the kernels k1 (x, y) =
(A + xTy/2)* and ka(x,y) = e_”x_y”%/z, and the greedy-selected sets have the
size 21 (for ky) and 25 (for k»), respectively. The approximations s1, so and their
corresponding residuals r; and rp computed over the domain [—0.1, 0.1]2. The
results can be seen in Fig. 5.

We remark that in all the three experiments both kernels give comparable results
in terms of error magnitude, and they both provide a good approximation of the
manifold.



Greedy Kernel Methods for Center Manifold Approximation 105

5 Conclusions

In this paper we introduced a novel algorithm to approximate the center manifold of
a given ODE using a data-based surrogate.

This algorithm computes an approximation of the manifold from a set of
numerical trajectories with different initial data. It is based on kernel methods,
which allow the use of the scattered data generated by these simulations as
training points. Moreover, an application-specific ansatz and cost function have been
employed in order to enforce suitable properties on the surrogate.

Several numerical experiments suggested that the present method can reach a
significant accuracy, and that it has the potential to be used as an effective model
reduction technique. It seems promising to apply this approach to high dimensional
systems as the approximation technique straightforwardly can be extended and is
less prone to the curse of dimensionality than grid-based approximation techniques.
An interesting extension would consist of determining the decomposition (2) in a
data-based fashion by suitable processing of the trajectory data.
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