18,444 research outputs found

    Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air

    Full text link
    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min -1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratorygrown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.260.66 g methane m23 empty bed h21 was attained for the non-inoculated system, which was equivalent to removing 19.762.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min21 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane.©2014 Limbri et al

    Nationwide public perceptions regarding the acceptance of using wastewater for community health monitoring in the United States

    Get PDF
    To assess the levels of infection across communities during the coronavirus disease 2019 pandemic, researchers have measured severe acute respiratory syndrome coronavirus 2 RNA in feces dissolved in sewer water. This activity is colloquially known as sewer monitoring and is referred to as wastewater-based epidemiology in academic settings. Although global ethical principles have been described, sewer monitoring is unregulated for health privacy protection when used for public health surveillance in the United States. This study used Qualtrics XM, a national research panel provider, to recruit participants to answer an online survey. Respondents (N = 3,083) answered questions about their knowledge, perceptions of what is to be monitored, where monitoring should occur, and privacy concerns related to sewer monitoring as a public health surveillance tool. Furthermore, a privacy attitude questionnaire was used to assess the general privacy boundaries of respondents. Participants were more likely to support monitoring for diseases (92%), environmental toxins (92%), and terrorist threats (88%; e.g., anthrax). Two-third of the respondents endorsed no prohibition on location sampling scale (e.g., monitoring single residence to entire community was acceptable); the most common location category respondents wanted to prohibit sampling was at personal residences. Sewer monitoring is an emerging technology, and our study sheds light on perceptions that could benefit from educational programs in areas where public acceptance is comparatively lower. Respondents clearly communicated guard rails for sewer monitoring, and public opinion should inform future policy, application, and regulation measures

    Fruit Quality And Consumption By Songbirds During Autumn Migration

    Get PDF
    Seasonal fruits are an important food resource for small songbirds during autumn migration in southern New England. Therefore, conservation and management of important stopover sites used by migrating birds requires knowledge about nutritional requirements of songbirds and nutritional composition of commonly consumed fruits. We measured nutrient composition and energy density of nine common fruits on Block Island, Rhode Island, and conducted a field experiment to estimate consumption rates of three of these fruits by birds during autumn migration. Most common fruits on Block Island contained primarily carbohydrates (41.3–91.2% dry weight), and little protein (2.6–8.6%) and fat (0.9–3.7%), although three contained more fat: Myrica pennsylvanica (50.3%), Viburnum dentatum (41.3%), and Parthenocissus quinquefolia (23.6%). Bird consumption of high-fat, high-energy V. dentatum fruit and high-carbohydrate, low-energy Phytolacca americana fruit was greater than consumption of Aronia melanocarpa, a high-carbohydrate, low-energy fruit. We estimated that migratory birds on Block Island must eat up to four times their body mass in fruit wet weight each day to satisfy their energy requirements when eating low-energy fruits such as P. americana, and they cannot satisfy their protein requirements when eating only certain high-energy fruits such as V. dentatum. Our results suggest that many migratory birds must eat both fruits and insects to meet their dietary needs. Thus, shrubland habitat at important migratory stopover sites such as Block Island should be managed so that it contains a variety of preferred fruit-bearing shrubs and an adequate abundance of insects

    GBT Discovery of Two Binary Millisecond Pulsars in the Globular Cluster M30

    Full text link
    We report the discovery of two binary millisecond pulsars in the core-collapsed globular cluster M30 using the Green Bank Telescope (GBT) at 20 cm. PSR J2140-2310A (M30A) is an eclipsing 11-ms pulsar in a 4-hr circular orbit and PSR J2140-23B (M30B) is a 13-ms pulsar in an as yet undetermined but most likely highly eccentric (e>0.5) and relativistic orbit. Timing observations of M30A with a 20-month baseline have provided precise determinations of the pulsar's position (within 4" of the optical centroid of the cluster), and spin and orbital parameters, which constrain the mass of the companion star to be m_2 >~ 0.1Msun. The position of M30A is coincident with a possible thermal X-ray point source found in archival Chandra data which is most likely due to emission from hot polar caps on the neutron star. In addition, there is a faint (V_555 ~ 23.8) star visible in archival HST F555W data that may be the companion to the pulsar. Eclipses of the pulsed radio emission from M30A by the ionized wind from the compact companion star show a frequency dependent duration (\propto\nu^{-\alpha} with \alpha ~ 0.4-0.5) and delay the pulse arrival times near eclipse ingress and egress by up to 2-3 ms. Future observations of M30 may allow both the measurement of post-Keplerian orbital parameters from M30B and the detection of new pulsars due to the effects of strong diffractive scintillation.Comment: 10 pages, 6 figures, Submitted to ApJ. This version includes many recommended modifications, an improved structure, a new author, and a completely redone optical analysi

    Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks

    Get PDF
    The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth\u27s climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models

    Top Quark Physics at the Tevatron

    Get PDF
    The discovery of the top quark in 1995, by the CDF and D0 collaborations at the Fermilab Tevatron, marked the dawn of a new era in particle physics. Since then, enormous efforts have been made to study the properties of this remarkable particle, especially its mass and production cross section. In this article, we review the status of top quark physics as studied by the two collaborations using the p-pbar collider data at sqrt(s) = 1.8 TeV. The combined measurement of the top quark mass, m_t = 173.8 +- 5.0 GeV/c^2, makes it known to a fractional precision better than any other quark mass. The production cross sections are measured as sigma (t-tbar) = 7.6 -1.5 +1.8 pb by CDF and sigma (t-tbar) = 5.5 +- 1.8 pb by D0. Further investigations of t-tbar decays and future prospects are briefly discussed.Comment: 119 pages, 59 figures, 17 tables Submitted to Int. J. Mod. Phys. A Fixed some minor error

    Water-silicone separated volumetric MR acquisition for rapid assessment of breast implants

    Get PDF
    Purpose: To develop a robust T2-weighted volumetric imaging technique with uniform water-silicone separation and simultaneous fat suppression for rapid assessment of breast implants in a single acquisition. Materials and Methods: A three-dimensional (3D) fast spin echo sequence that uses variable refocusing flip angles was combined with a three-point chemical-shift technique (IDEAL) and short tau inversion recovery (STIR). Phase shifts of -π/6, +π/2, and +7π/6 between water and silicone were used for IDEAL processing. For comparison, two-dimensional images using 2D-FSE-IDEAL with STIR were also acquired in axial, coronal, and sagittal orientations. Results: Near-isotropic (true spatial resolution-0.9 ×1.3 × 2.0 mm 3) volumetric breast images with uniform water-silicone separation and simultaneous fat suppression were acquired successfully in clinically feasible scan times (7:00-10:00 min). The 2D images were acquired with the same in-plane resolution (0.9 × 1.3 mm 2), but the slice thickness was increased to 6 mm with a slice gap of 1 mm for complete coverage of the implants in a reasonable scan time, which varied between 18:00 and 22:30 min. Conclusion: The single volumetric acquisition with uniform water and silicone separation enables images to be reformatted into any orientation. This allows comprehensive assessment of breast implant integrity in less than 10 min of total examination time. © 2012 Wiley Periodicals, Inc

    Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Get PDF
    Future human space travel will primarily consist of long-duration missions aboard the International Space Station (ISS) or exploration class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage primarily from radiation, but also from psychological stress, reduced physical activity, diminished nutritional status, and, in the case of extravehicular activity, hyperoxic exposure. There is evidence that increased oxidative damage and inflammation can accelerate the development of atherosclerosis. PURPOSE The purpose of this proposal is to identify biomarkers of oxidative and inflammatory stress and to correlate them to indices of atherosclerosis risk before, during, and after long-duration spaceflight. METHODS To meet the objectives of the study, we will study astronauts before, during, and up to 5 years after long-duration missions aboard ISS. Biomarkers of oxidative and inflammatory stress, some of which we have previously shown to be elevated with spaceflight, will be measured before, during, and after spaceflight. Arterial structure will be monitored using ultrasound to measure carotid intima-medial thickness before, during, and after weightlessness. Carotid intima-medial thickness has been shown to be a better indicator than Framingham Risk scores for prediction of atherosclerosis. Arterial function will be monitored using brachial flow-mediated dilation before flight and after landing. Brachial flow-mediated dilation is a good index of endothelium-dependent vasodilation, which is a sensitive predictor of atherosclerotic risk. This is the first study to propose assessing atherosclerotic risk using biochemical, structural, and functional measures before, during, and immediately after spaceflight and structural functional measures for up to 5 years after landing. EXPECTED RESULTS We hypothesize that these biomarkers of oxidative and inflammatory stress will be increased with spaceflight and will correlate with increased carotid intima-medial thickness in- and postflight and with decreased flow-mediated dilation after the mission. Furthermore, we hypothesize that measures of oxidative stress will return to baseline after flight, but that biomarkers of inflammatory stress and vascular indices of atherosclerosis risk will remain elevated

    Joint analysis of stressors and ecosystem services to enhance restoration effectiveness

    Get PDF
    With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213841110/-/DCSupplementa

    Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    Full text link
    We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1-MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.Comment: Accepted to Physical Review
    • …
    corecore