2,174 research outputs found
Inverse Diffusion Theory of Photoacoustics
This paper analyzes the reconstruction of diffusion and absorption parameters
in an elliptic equation from knowledge of internal data. In the application of
photo-acoustics, the internal data are the amount of thermal energy deposited
by high frequency radiation propagating inside a domain of interest. These data
are obtained by solving an inverse wave equation, which is well-studied in the
literature. We show that knowledge of two internal data based on well-chosen
boundary conditions uniquely determines two constitutive parameters in
diffusion and Schroedinger equations. Stability of the reconstruction is
guaranteed under additional geometric constraints of strict convexity. No
geometric constraints are necessary when internal data for well-chosen
boundary conditions are available, where is spatial dimension. The set of
well-chosen boundary conditions is characterized in terms of appropriate
complex geometrical optics (CGO) solutions.Comment: 24 page
Pre-operative rehabilitation for dysvascular lower-limb amputee patients:A focus group study involving medical professionals
Background Major lower-limb amputation (LLA) predisposes patients post-operatively to a significant decline in daily-life functioning. The physical condition of amputee patients prior to surgery is significantly deteriorated due to chronic peripheral vascular disease (PVD) and diabetes, which accounts for the majority of LLAs in the adult population. A common strategy called pre-rehabilitation has been used in multiple patient populations to prepare the patient for undergoing a surgical event and to improve post-operative patient outcomes. Pre-rehabilitation might enhance the outcome of dysvascular LLA patients and reduce the high post-operative mortality rates. However, experience of experts with pre-rehabilitation and feasibility of a pre-rehabilitation program in this group remains unknown. Objective To investigate the experiences of medical professionals and researchers in the field of LLA with the use of pre-rehabilitation in general and in particular PVD patients. Additionally, the study examines their opinions regarding need for and feasibility of a pre-rehabilitation program for dysvascular patients at risk for an LLA. Methods Two explorative focus group discussions were organized with in total 16 experts in the field of treatment and research of LLA. Transcribed data were coded using the Atlas. ti software package. Thematic analysis with inductive approach was opted to arrange and interpret codes. Results The experiences of the experts with pre-rehabilitation in dysvascular patients were scarce. The experts described dysvascular patients at risk for an LLA as a difficult group for prerehabilitation due to short time window prior to surgery, older age, multiple co-morbidities and lack of motivation for behavioral change. The experts concluded that a pre-rehabilitation program should focus on patients who have sufficient time in advance before the amputation for pre-rehabilitation and who are motivated to participate. Conclusion Although in general the effects of pre-rehabilitation are promising, pre-operative rehabilitation in dysvascular patients at risk for an LLA seems not feasible. Future research could focus on a better monitoring of dysvascular patients and the development of pre-rehabilitation in subgroups of younger dysvascular LLA patients
Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state
An important step in a phospholipid membrane pore formation by melittin
antimicrobial peptide is a reorientation of the peptide from a surface into a
transmembrane conformation. In this work we perform umbrella sampling
simulations to calculate the potential of mean force (PMF) for the
reorientation of melittin from a surface-bound state to a transmembrane state
and provide a molecular level insight into understanding peptide and lipid
properties that influence the existence of the free energy barrier. The PMFs
were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We
observe that the free energy barrier is reduced when the P/L ratio increased.
In addition, we study the cooperative effect; specifically we investigate if
the barrier is smaller for a second melittin reorientation, given that another
neighboring melittin was already in the transmembrane state. We observe that
indeed the barrier of the PMF curve is reduced in this case, thus confirming
the presence of a cooperative effect
Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target
Single-spin asymmetries for semi-inclusive electroproduction of charged pions
in deep-inelastic scattering of positrons are measured for the first time with
transverse target polarization. The asymmetry depends on the azimuthal angles
of both the pion () and the target spin axis () about the virtual
photon direction and relative to the lepton scattering plane. The extracted
Fourier component \cmpi is a signal of the previously unmeasured quark
transversity distribution, in conjunction with the so-called Collins
fragmentation function, also unknown. The Fourier component \smpi of the
asymmetry arises from a correlation between the transverse polarization of the
target nucleon and the intrinsic transverse momentum of quarks, as represented
by the previously unmeasured Sivers distribution function. Evidence for both
signals is observed, but the Sivers asymmetry may be affected by exclusive
vector meson productio
Search for an exotic S=-2, Q=-2 baryon resonance at a mass near 1862 MeV in quasi-real photoproduction
A search for an exotic baryon resonance with has been performed
in quasi-real photoproduction on a deuterium target through the decay channel
. No evidence for
a previously reported resonance is found in the invariant mass spectrum. An upper limit for the photoproduction cross
section of 2.1 nb is found at the 90% confidence level. The photoproduction
cross section for the is found to be between 9 and 24 nb
Double hadron leptoproduction in the nuclear medium
First measurement of double-hadron production in deep-inelastic scattering
has been measured with the HERMES spectrometer at HERA using a 27.6 GeV
positron beam with deuterium, nitrogen, krypton and xenon targets. The
influence of the nuclear medium on the ratio of double-hadron to single-hadron
yields has been investigated. Nuclear effects are clearly observed but with
substantially smaller magnitude and reduced -dependence compared to
previously measured single-hadron multiplicity ratios. The data are in fair
agreement with models based on partonic or pre-hadronic energy loss, while they
seem to rule out a pure absorptive treatment of the final state interactions.
Thus, the double-hadron ratio provides an additional tool for studying
modifications of hadronization in nuclear matter
Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target
Single-spin asymmetries in the semi-inclusive production of charged pions in
deep-inelastic scattering from transversely and longitudinally polarized proton
targets are combined to evaluate the subleading-twist contribution to the
longitudinal case. This contribution is significantly positive for (\pi^+)
mesons and dominates the asymmetries on a longitudinally polarized target
previously measured by \hermes. The subleading-twist contribution for (\pi^-)
mesons is found to be small
Bose-Einstein correlations in hadron-pairs from lepto-production on nuclei ranging from hydrogen to xenon
Bose-Einstein correlations of like-sign charged hadrons produced in
deep-inelastic electron and positron scattering are studied in the HERMES
experiment using nuclear targets of H, H, He, He, N, Ne, Kr,
and Xe. A Gaussian approach is used to parametrize a two-particle correlation
function determined from events with at least two charged hadrons of the same
sign charge. This correlation function is compared to two different empirical
distributions that do not include the Bose-Einstein correlations. One
distribution is derived from unlike-sign hadron pairs, and the second is
derived from mixing like-sign pairs from different events. The extraction
procedure used simulations incorporating the experimental setup in order to
correct the results for spectrometer acceptance effects, and was tested using
the distribution of unlike-sign hadron pairs. Clear signals of Bose-Einstein
correlations for all target nuclei without a significant variation with the
nuclear target mass are found. Also, no evidence for a dependence on the
invariant mass W of the photon-nucleon system is found when the results are
compared to those of previous experiments
- …