2,178 research outputs found

    Bibliography of the computer codes literature examined by the Radiation Shielding Information Center

    Get PDF
    Bibliography of computer codes on radiation and nuclear shieldin

    Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex

    Get PDF
    In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or detachment. The transduction process is mediated by the mechanics of the whisker shaft and follicle-sinus complex (FSC), and the mechanics and electro-chemistry of mechanoreceptors within the FSC. An understanding of this transduction process and the nature of the primary neural codes generated is crucial for understanding more central sensory processing in the thalamus and cortex. However, the details of the peripheral processing are currently poorly understood. To overcome this deficiency in our knowledge, we constructed a simulated electro-mechanical model of the whisker-FSC-mechanoreceptor system in the rat and tested it against a variety of data drawn from the literature. The agreement was good enough to suggest that the model captures many of the key features of the peripheral whisker system in the rat

    Structural basis for the design of selective phosphodiesterase 4B inhibitors

    Get PDF
    AbstractPhosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor –Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70–80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs

    Microwave photovoltage and photoresistance effects in ferromagnetic microstrips

    Full text link
    We investigate the dc electric response induced by ferromagnetic resonance in ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization precession alters the angle of the magnetization with respect to both dc and rf current. Consequently the time averaged anisotropic magnetoresistance (AMR) changes (photoresistance). At the same time the time-dependent AMR oscillation rectifies a part of the rf current and induces a dc voltage (photovoltage). A phenomenological approach to magnetoresistance is used to describe the distinct characteristics of the photoresistance and photovoltage with a consistent formalism, which is found in excellent agreement with experiments performed on in-plane magnetized ferromagnetic microstrips. Application of the microwave photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure
    • …
    corecore