216 research outputs found

    Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process

    Get PDF
    Oil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220 ºC. The highest XOS concentration, 17.6 g/L which relayed from solubilisation of 63 g/100 g xylan was achieved at 210 ºC and there was a minimum amount of xylose and furfural being produced. The chromatographic purification which was undertaken to purify the oligosaccharide-rich liquor resulted in a product with 74–78% purity, of which 83–85% was XOS with degree of polymerisation (DP) between 5 and 40

    A Decade of Advancing Knowledge: Celebrating 10 Years of GrandFamilies: The Contemporary Journal of Research, Practice, and Policy

    Get PDF
    In response to a 2012 needs assessment involving 243 professionals in the kinship care field, the journal GrandFamilies was established to serve as a vital resource, enhancing knowledge and skills among researchers and practitioners. Since its launch in 2014, GrandFamilies has reached a global audience, with articles downloaded in over 166 countries. To date, the journal has achieved 79,239 total views, including 22,952 views of abstracts and 56,287 full-text downloads. While the majority of downloads (30,374) originate from the United States, there is a steadily increasing international readership. The journal\u27s diverse audience underscores its broad impact and relevance across academic, commercial, and governmental sectors. This synopsis highlights the progress made over the past decade, including trends in submissions, global reach, institutional readership, and the most popular articles

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood

    Get PDF
    In this work, Eucalyptus globulus wood was pretreated under non-isothermal autohydrolysis process at 210, 220, and 230 °C, obtaining a pretreated solid with high cellulose content and a hemicellulosic liquid phase (HLP) containing mainly xylose, acetic acid, furfural, xylooligosaccharides, and phenolic compounds. The maximum concentration of xylooligosaccharides (8.97 g/L) and phenolic compounds (2.66 g/L) was obtained at 210 and 230 °C, respectively. To evaluate the effect of HLP addition on the enzymatic hydrolysis using unwashed pretreated solid as substrate, different proportions of HLP were studied. Also, in order to use the whole slurry on enzymatic hydrolysis, the supplementation of xylanases was evaluated. Glucose concentration of 107.49 g/L (corresponding to 74.65 % of conversion) was obtained using pretreated solid at 220 °C liquid/solid ratio (LSR) of 4 g/g and enzyme solid ratio (ESR) of 25 FPU/gwithout the addition of HLP. Thus, it was shown that the unwashed pretreated solids are susceptible to enzymatic hydrolysis contributing to reduce operational cost (water consumption). Additionally, the influence of the inhibitory compounds in the HLP was shown to affect the enzymatic hydrolysis. Results indicated that 82.52 g/L of glucose (59.37 % of conversion) was obtained, using 100 % of HLP at LSR of 4 g/g and ESR of 16 FPU/g at 210 °C of pretreated solid. However, a positive effect was shown on the enzymatic hydrolysis when the xylanases were added using 100 % of HLP, increasing to 35 and 27 % in the glucose production with respect to whole slurry without addition of xylanases.The authors A. Romani and F. B. Pereira thank to the Portuguese Foundation for Science and Technology (FCT, Portugal) for their fellowships (grant number, SFRH/BPD/77995/2011 and SFRH/BD/64776/2009, respectively)

    Revealing the Intrinsic Restructuring of Bi<sub>2</sub>O<sub>3</sub> Nanoparticles into Bi Nanosheets during Electrochemical CO<sub>2</sub> Reduction

    Get PDF
    Bismuth is a catalyst material that selectively produces formate during the electrochemical reduction of CO2. While different synthesis strategies have been employed to create electrocatalysts with better performance, the restructuring of bismuth precatalysts during the reaction has also been previously reported. The mechanism behind the change has, however, remained unclear. Here, we show that Bi2O3 nanoparticles supported on Vulcan carbon intrinsically transform into stellated nanosheet aggregates upon exposure to an electrolyte. Liquid cell transmission electron microscopy observations first revealed the gradual restructuring of the nanoparticles into nanosheets in the presence of 0.1 M KHCO3 without an applied potential. Our experiments also associated the restructuring with solubility of bismuth in the electrolyte. While the consequent agglomerates were stable under moderate negative potentials (−0.3 VRHE), they dissolved over time at larger negative potentials (−0.4 and −0.5 VRHE). Operando Raman spectra collected during the reaction showed that under an applied potential, the oxide particles reduced to metallic bismuth, thereby confirming the metal as the working phase for producing formate. These results inform us about the working morphology of these electrocatalysts and their formation and degradation mechanisms

    Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach

    Get PDF
    Not Availableonsumers are increasingly interested in nutritious, safe and healthy muscle food products with reduced salt and fat that benefit their well-being. Hence, food processors are constantly in search of natural bioactive ingredients that offer health benefits beyond their nutritive values without affecting the quality of the products. Mushrooms are considered as next-generation healthy food components. Owing to their low content of fat, high-quality proteins, dietary fibre and the presence of nutraceuticals, they are ideally preferred in formulation of low-caloric functional foods. There is a growing trend to fortify muscle food with edible mushrooms to harness their goodness in terms of nutritive, bioactive and therapeutic values. The incorporation of mushrooms in muscle foods assumes significance, as it is favourably accepted by consumers because of its fibrous structure that mimics the texture with meat analogues offering unique taste and umami flavour. This review outlines the current knowledge in the literature about the nutritional richness, functional bioactive compounds and medicinal values of mushrooms offering various health benefits. Furthermore, the effects of functional ingredients of mushrooms in improving the quality and sensory attributes of nutritionally superior and next-generation healthier muscle food products are also highlighted in this paper.Not Availabl

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
    corecore