184 research outputs found
Evolution of form in metal-organic frameworks
Self-assembly has proven to be a widely successful synthetic strategy for functional materials, especially for metal-organic materials (MOMs), an emerging class of porous materials consisting of metal-organic frameworks (MOFs) and metal-organic polyhedra (MOPs). However, there are areas in MOM synthesis in which such self-assembly has not been fully utilized, such as controlling the interior of MOM crystals. Here we demonstrate sequential self-assembly strategy for synthesizing various forms of MOM crystals, including double-shell hollow MOMs, based on single-crystal to single-crystal transformation from MOP to MOF. Moreover, this synthetic strategy also yields other forms, such as solid, core-shell, double and triple matryoshka, and single-shell hollow MOMs, thereby exhibiting form evolution in MOMs. We anticipate that this synthetic approach might open up a new direction for the development of diverse forms in MOMs, with highly advanced areas such as sequential drug delivery/release and heterogeneous cascade catalysis targeted in the foreseeable future.ope
Plant Genetic Bases Associated With Microbiota Descriptors Shed Light Into a Novel Holobiont Generalist Genes Theory
Plants as animals are associated with a cortege of microbes influencing their health, fitness and evolution. Scientists refer to all living organisms as holobionts, complex genetic units that coevolve simultaneously. This is what has been recently proposed as the hologenome theory. This exciting theory has important implications on animal and plant health; however, it still needs consistent proof to be validated. Indeed, holobionts are still poorly studied in their natural habitats where coevolution processes occur. Compared to animals, wild plant populations are an excellent model to explore the hologenome theory. These sessile holobionts have coevolved with their microbiota for decades, and natural selection and adaptive processes acting on wild plants are likely to regulate the plant-microbe interactions. Here, we conducted a microbiota survey, plant genome sequencing and genome-environmental analysis (GEA) of 26 natural populations of the plant species Brassica rapa. We collected plants over two seasons in Italy and France and analysed the root and rhizosphere microbiota. When conducting GEA, we evidenced neat peaks of association correlating with both fungal and bacterial microbiota. Surprisingly, we found 13 common genes between fungal and bacterial diversity descriptors that we referred to under the name of holobiont generalist genes (HGGs)
Factorization of a 512 bit RSA modulus
This paper reports on the factorization of the 512 bit number RSA-155 by the number field Sieve factoring method (NFS) and discusses the implications for RS
Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination
In this study, continuous zirconium(IV)-based metal-organic framework (Zr-MOF) membranes were prepared. The pure-phase Zr-MOF (i.e., UiO-66) polycrystalline membranes were fabricated on alumina hollow fibers using an in situ solvothermal synthesis method. Single-gas permeation and ion rejection tests were carried out to confirm membrane integrity and functionality. The membrane exhibited excellent multivalent ion rejection (e.g., 86.3% for Ca2+, 98.0% for Mg2+, and 99.3% for Al3+) on the basis of size exclusion with moderate permeance (0.14 L m-2 h-1 bar-1) and good permeability (0.28 L m-2 h-1 bar-1 μm). Benefiting from the exceptional chemical stability of the UiO-66 material, no degradation of membrane performance was observed for various tests up to 170 h toward a wide range of saline solutions. The high separation performance combined with its outstanding water stability suggests the developed UiO-66 membrane as a promising candidate for water desalination
A 1-Year Prospective French Nationwide Study of Emergency Hospital Admissions in Children and Adults with Primary Immunodeficiency.
PURPOSE: Patients with primary immunodeficiency (PID) are at risk of serious complications. However, data on the incidence and causes of emergency hospital admissions are scarce. The primary objective of the present study was to describe emergency hospital admissions among patients with PID, with a view to identifying "at-risk" patient profiles.
METHODS: We performed a prospective observational 12-month multicenter study in France via the CEREDIH network of regional PID reference centers from November 2010 to October 2011. All patients with PIDs requiring emergency hospital admission were included.
RESULTS: A total of 200 admissions concerned 137 patients (73 adults and 64 children, 53% of whom had antibody deficiencies). Thirty admissions were reported for 16 hematopoietic stem cell transplantation recipients. When considering the 170 admissions of non-transplant patients, 149 (85%) were related to acute infections (respiratory tract infections and gastrointestinal tract infections in 72 (36%) and 34 (17%) of cases, respectively). Seventy-seven percent of the admissions occurred during winter or spring (December to May). The in-hospital mortality rate was 8.8% (12 patients); death was related to a severe infection in 11 cases (8%) and Epstein-Barr virus-induced lymphoma in 1 case. Patients with a central venous catheter (n = 19, 13.9%) were significantly more hospitalized for an infection (94.7%) than for a non-infectious reason (5.3%) (p = 0.04).
CONCLUSION: Our data showed that the annual incidence of emergency hospital admission among patients with PID is 3.4%. The leading cause of emergency hospital admission was an acute infection, and having a central venous catheter was associated with a significantly greater risk of admission for an infectious episode
The prognosis of CALM-AF10-positive adult T-cell acute lymphoblastic leukemias depends on the stage of maturation arrest
A narrative review of health research capacity strengthening in low and middle-income countries: lessons for conflict-affected areas
Conducting health research in conflict-affected areas and other complex environments is difficult, yet vital. However, the capacity to undertake such research is often limited and with little translation into practice, particularly in poorer countries. There is therefore a need to strengthen health research capacity in conflict-affected countries and regions. In this narrative review, we draw together evidence from low and middle-income countries to highlight challenges to research capacity strengthening in conflict, as well as examples of good practice. We find that authorship trends in health research indicate global imbalances in research capacity, with implications for the type and priorities of research produced, equity within epistemic communities and the development of sustainable research capacity in low and middle-income countries. Yet, there is little evidence on what constitutes effective health research capacity strengthening in conflict-affected areas. There is more evidence on health research capacity strengthening in general, from which several key enablers emerge: adequate and sustained financing; effective stewardship and equitable research partnerships; mentorship of researchers of all levels; and effective linkages of research to policy and practice. Strengthening health research capacity in conflict-affected areas needs to occur at multiple levels to ensure sustainability and equity. Capacity strengthening interventions need to take into consideration the dynamics of conflict, power dynamics within research collaborations, the potential impact of technology, and the wider political environment in which they take place.</p
Current trend in synthesis, Post-Synthetic modifications and biological applications of Nanometal-Organic frameworks (NMOFs)
Since the early reports of MOFs and their interesting properties, research involving these materials has grown wide in scope and applications. Various synthetic approaches have ensued in view of obtaining materials with optimised properties, the extensive scope of application spanning from energy, gas sorption, catalysis biological applications has meant exponentially evolved over the years. The far‐reaching synthetic and PSM approaches and porosity control possibilities have continued to serve as a motivation for research on these materials. With respect to the biological applications, MOFs have shown promise as good candidates in applications involving drug delivery, BioMOFs, sensing, imaging amongst others. Despite being a while away from successful entry into the market, observed results in sensing, drug delivery, and imaging put these materials on the spot light as candidates poised to usher in a revolution in biology. In this regard, this review article focuses current approaches in synthesis, post functionalization and biological applications of these materials with particular attention on drug delivery, imaging, sensing and BioMOFs
- …
