15,711 research outputs found

    Temporal characteristics of the influence of punishment on perceptual decision making in the human brain

    Get PDF
    Perceptual decision making is the process by which information from sensory systems is combined and used to influence our behavior. In addition to the sensory input, this process can be affected by other factors, such as reward and punishment for correct and incorrect responses. To investigate the temporal dynamics of how monetary punishment influences perceptual decision making in humans, we collected electroencephalography (EEG) data during a perceptual categorization task whereby the punishment level for incorrect responses was parametrically manipulated across blocks of trials. Behaviorally, we observed improved accuracy for high relative to low punishment levels. Using multivariate linear discriminant analysis of the EEG, we identified multiple punishment-induced discriminating components with spatially distinct scalp topographies. Compared with components related to sensory evidence, components discriminating punishment levels appeared later in the trial, suggesting that punishment affects primarily late postsensory, decision-related processing. Crucially, the amplitude of these punishment components across participants was predictive of the size of the behavioral improvements induced by punishment. Finally, trial-by-trial changes in prestimulus oscillatory activity in the alpha and gamma bands were good predictors of the amplitude of these components. We discuss these findings in the context of increased motivation/attention, resulting from increases in punishment, which in turn yields improved decision-related processing

    A New Custodian for a Realistic Higgsless Model

    Get PDF
    We present an example of a realistic Higgsless model that makes use of alternative SU(2)RSU(2)_R assignments for the top and bottom quarks recently proposed by Agashe et al. which results in an enhanced custodial symmetry. Using these new representat ions reduces the deviations in the ZbbˉZb_\ell\bar{b}_\ell coupling to 4\sim 4% for a wide range of parameters, while this remaining correction can also be eliminated by varying the localization parameter (bulk mass) for brb_r.Comment: 11 pages, 2 figure

    Bound states and magnetic field-induced valley splitting in gate-tunable graphene quantum dots

    Full text link
    The magnetic field dependence of energy levels in gapped single- and bilayer graphene quantum dots (QDs) defined by electrostatic gates is studied analytically in terms of the Dirac equation. Due to the absence of sharp edges in these types of QDs, the valley degree of freedom is a good quantum number. We show that its degeneracy is efficiently and controllably broken by a magnetic field applied perpendicular to the graphene plane. This opens up a feasible route to create well-defined and well controlled spin- and valley-qubits in graphene QDs. We also point out the similarities and differences in the spectrum between single- and bilayer graphene quantum dots. Striking in the case of bilayer graphene is the anomalous bulk Landau level (LL) that crosses the gap which results in crossings of QD states with this bulk LL at large magnetic fields in stark contrast to the single-layer case where this LL is absent. The tunability of the gap in the bilayer case allows us to observe different regimes of level spacings directly related to the formation of a pronounced ``Mexican hat'' in the bulk bandstructure. We discuss the applicability of such QDs to control and measure the valley isospin and their potential use for hosting and controlling spin qubits.Comment: 12 pages, 10 figure

    Basins of attraction in forced systems with time-varying dissipation

    Get PDF
    We consider dissipative periodically forced systems and investigate cases in which having information as to how the system behaves for constant dissipation may be used when dissipation varies in time before settling at a constant final value. First, we consider situations where one is interested in the basins of attraction for damping coefficients varying linearly between two given values over many different time intervals: we outline a method to reduce the computation time required to estimate numerically the relative areas of the basins and discuss its range of applicability. Second, we observe that sometimes very slight changes in the time interval may produce abrupt large variations in the relative areas of the basins of attraction of the surviving attractors: we show how comparing the contracted phase space at a time after the final value of dissipation has been reached with the basins of attraction corresponding to that value of constant dissipation can explain the presence of such variations. Both procedures are illustrated by application to a pendulum with periodically oscillating support.Comment: 16 pages, 13 figures, 7 table

    ESHRE task force on ethics and law 15: Cross-border reproductive care

    Get PDF
    This paper analyses the ethical aspects of cross-border reproductive care. Ethical questions are raised by some of the main reasons of cross-border travelling, i.e. law evasion and unequal access to treatment. The phenomenon also generates possible conflicts linked to the responsibility of the professionals. Three points are discussed: the moral obligation of the physician to refer the patient, his/her duty to provide information and counselling and the acceptability of fee-splitting. The recommendations focus on measures to reduce or limit the number of patients that have to travel abroad and on steps to guarantee the safety and quality of the treatment wherever it is provided

    Evaluating Morphological Computation in Muscle and DC-motor Driven Models of Human Hopping

    Get PDF
    In the context of embodied artificial intelligence, morphological computation refers to processes which are conducted by the body (and environment) that otherwise would have to be performed by the brain. Exploiting environmental and morphological properties is an important feature of embodied systems. The main reason is that it allows to significantly reduce the controller complexity. An important aspect of morphological computation is that it cannot be assigned to an embodied system per se, but that it is, as we show, behavior- and state-dependent. In this work, we evaluate two different measures of morphological computation that can be applied in robotic systems and in computer simulations of biological movement. As an example, these measures were evaluated on muscle and DC-motor driven hopping models. We show that a state-dependent analysis of the hopping behaviors provides additional insights that cannot be gained from the averaged measures alone. This work includes algorithms and computer code for the measures.Comment: 10 pages, 4 figures, 1 table, 5 algorithm

    Optical manipulation of Berry phase in a solid-state spin qubit

    Full text link
    The phase relation between quantum states represents an essential resource for the storage and processing of quantum information. While quantum phases are commonly controlled dynamically by tuning energetic interactions, utilizing geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase control in solid-state systems rely on microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method based on stimulated Raman adiabatic passage to accumulate a geometric phase, the Berry phase, in an individual nitrogen-vacancy (NV) center in diamond. Using diffraction-limited laser light, we guide the NV center's spin along loops on the Bloch sphere to enclose arbitrary Berry phase and characterize these trajectories through time-resolved state tomography. We investigate the limits of this control due to loss of adiabiaticity and decoherence, as well as its robustness to noise intentionally introduced into the experimental control parameters, finding its resilience to be independent of the amount of Berry phase enclosed. These techniques set the foundation for optical geometric manipulation in future implementations of photonic networks of solid state qubits linked and controlled by light.Comment: 18 pages, 5 figure
    corecore