100 research outputs found

    Correlated Disorder Substrate‐Integrated Nanodisk Scatterers for Light Extraction in Organic Light Emitting Diodes

    Get PDF
    A major loss mechanism in organic light emitting diodes (OLEDs) is the coupling of the emitter molecule light field to waveguide modes in the OLED thin film stack. In this work, a disordered 2D array of TiO2_{2} nanodisk scatterers is integrated into the OLED substrate to enable efficient light extraction from these waveguide modes. Fabrication of the nanodisks is based on a bottom-up, colloidal lithography technique and subsequent pattern transfer into high refractive index TiO2_{2} via reactive ion etching. The substrates are completed by spin-coating a polymer planarization layer before applying the OLED thin film stack. This ensures reproducible optoelectronic properties of the OLED through leaving the electrically active layers planar. Simultaneously, the nanodisks in close vicinity to the thin film stack ensure efficient out-of-plane scattering of waveguide modes. In a monochromatic OLED (center wavelength λ0_{0} = 520 nm), a 44.2%rel_{rel} increase in external quantum efficiency is achieved in comparison to a device without scattering structure. An in-depth numerical analysis reveals that this significant enhancement is only partly due to the out-coupling of waveguide modes. Additional enhancement is suspected to result from out-coupling of substrate modes through scattering by the nanodisks. Further improvements to the scattering structure are numerically evaluated

    Fabrication and evaluation of a nickel shim for large-area hot embossing of plant surface structures

    Get PDF
    Petal textures exhibit outstanding broadband and omnidirectional light harvesting properties on solar cells [1,2] + by choice of low surface energy materials their self-cleaning properties can be harnessed [3]. A hot embossing routine via robust nickel embossing tools has been developed for a large area fabrication of such textures

    A Crucial Role for Infected-Cell/Antibody Immune Complexes in the Enhancement of Endogenous Antiviral Immunity by Short Passive Immunotherapy

    Get PDF
    Antiviral monoclonal antibodies (mAbs) represent promising therapeutics. However, most mAbs-based immunotherapies conducted so far have only considered the blunting of viral propagation and not other possible therapeutic effects independent of virus neutralization, namely the modulation of the endogenous immune response. As induction of long-term antiviral immunity still remains a paramount challenge for treating chronic infections, we have asked here whether neutralizing mAbs can, in addition to blunting viral propagation, exert immunomodulatory effects with protective outcomes. Supporting this idea, we report here that mice infected with the FrCasE murine retrovirus on day 8 after birth die of leukemia within 4–5 months and mount a non-protective immune response, whereas those rapidly subjected to short immunotherapy with a neutralizing mAb survive healthy and mount a long-lasting protective antiviral immunity with strong humoral and cellular immune responses. Interestingly, the administered mAb mediates lysis of infected cells through an antibody-dependent cell cytotoxicity (ADCC) mechanism. In addition, it forms immune complexes (ICs) with infected cells that enhance antiviral CTL responses through FcγR-mediated binding to dendritic cells (DCs). Importantly, the endogenous antiviral antibodies generated in mAb-treated mice also display the same properties, allowing containment of viral propagation and enhancement of memory cellular responses after disappearance of the administered mAb. Thus, our data demonstrate that neutralizing antiviral mAbs can act as immunomodulatory agents capable of stimulating a protective immunity lasting long after the end of the treatment. They also show an important role of infected-cells/antibody complexes in the induction and the maintenance of protective immunity through enhancement of both primary and memory antiviral T-cell responses. They also indicate that targeting infected cells, and not just viruses, by antibodies can be crucial for elicitation of efficient, long-lasting antiviral T-cell responses. This must be considered when designing antiviral mAb-based immunotherapies

    Kawasaki syndrome: an intriguing disease with numerous unsolved dilemmas

    Get PDF
    More than 40 years have passed since Kawasaki syndrome (KS) was first described. Yet KS still remains an enigmatic illness which damages the coronary arteries in a quarter of untreated patients and is the most common cause of childhood-acquired heart disease in developed countries. Many gaps exist in our knowledge of the etiology and pathogenesis of KS, making improvements in therapy difficult. In addition, many KS features and issues still demand further efforts to achieve a much better understanding of the disease. Some of these problem areas include coronary artery injuries in children not fulfilling the classic diagnostic criteria, genetic predisposition to KS, unpredictable ineffectiveness of current therapy in some cases, vascular dysfunction in patients not showing echocardiographic evidence of coronary artery abnormalities in the acute phase of KS, and risk of potential premature atherosclerosis. Also, the lack of specific laboratory tests for early identification of the atypical and incomplete cases, especially in infants, is one of the main obstacles to beginning treatment early and thereby decreasing the incidence of cardiovascular involvement. Transthoracic echocardiography remains the gold-standard for evaluation of coronary arteries in the acute phase and follow-up. In KS patients with severe vascular complications, more costly and potentially invasive investigations such as coronary CT angiography and MRI may be necessary. As children with KS with or without heart involvement become adolescents and adults, the recognition and treatment of the potential long term sequelae become crucial, requiring that rheumatologists, infectious disease specialists, and cardiologists cooperate to develop specific guidelines for a proper evaluation and management of these patients. More education is needed for physicians and other professionals about how to recognize the long-term impact of systemic problems related to KS

    Natural suppressor cell inhibiting T killer responses against retroviruses: a model for self tolerance.

    Full text link
    Abstract We previously reported the characterization of a spontaneous suppressor T cell population (NSC) present in naive mice and able to suppress the cytotoxic response (CTL) against tumor cells induced only by endogenous Gross virus (GLV). In this study we demonstrate the existence of such NSC inhibiting the CTL activity against tumor cells induced by the normally exogenous Moloney virus (M-MLV) in mice of the Mov-13 (V+) strain in which the M-MLV has been artificially endogenized and which express the virus during the embryonal life. These NSC are not found in other Mov strains in which the endogenized M-MLV is not expressed during fetal life. The implication of these data in the mechanism of self tolerance is discussed.</jats:p

    T cells from naive mice suppress the in vitro cytotoxic response against endogenous Gross virus-induced tumor cells.

    Full text link
    Abstract Syngeneic normal lymphoid cells added in co-culture of immune lymphocytes and tumor cells reveal a suppressive activity inhibiting the generation of cytolytic T lymphocytes. The suppression was specific for the response directed against endogenous virus-induced or x-ray-induced tumor cells expressing endogenous C type virus antigens. Thymocytes, spleen cells, or lymph node cells from naive mice were able to express this suppressive activity. The same cells displayed no suppressive activity on killer cells directed against exogenous C type virus-induced tumor cells. The suppressor cells were Thy-1+, Lyt-1- 2+. Our results strongly suggested that the spontaneous suppressor cells exert their activity by interacting with an early step on the CTL response, probably at the level of the helper T cell function. The suppressive activity was mediated by soluble factor(s) that were antigen specific and possibly H-2 restricted. The possible implications of these spontaneous suppressor T lymphocytes in the development of endogenous virus-induced tumors and their possible implications in tolerance to self antigens are discussed.</jats:p

    Inkjet-printed internal light extraction layers for organic light emitting diodes

    No full text
    We have developed inkjet-printed scattering layers for enhanced light extraction in organic light emitting diodes (OLEDs). These layers are based on scattering polymer/nanoparticle composites, which are prepared from a solvent-free process and used for the outcoupling of waveguide modes to free propagating modes, thus improving the device efficiencies. Two different monomers are examined and an inkjet-printing process is developed for each of them.Wefirst analyze the inks’rheological properties, followed by the optical and morphological properties of the resulting layers. Upon integration of these printed layers into an OLED stack, the device efficiencies are increased by up to 40% with respect to an unpatterned reference device. Furthermore, we show that these internal light extraction layers improve the angular and spectral stability of the devices
    corecore