237 research outputs found

    Seismic wide-angle study of accreted Proterozoic crust in southeastern Wyoming

    Get PDF
    A seismic wide-angle xperiment was conducted in southeastern Wyoming, USA to investigate the seismic character of a postulated Proterozoic magmatic arc south of the suture (Cheyenne Belt) to the Archean Wyoming Province. Recordings from vibrator and dynamite sources with offsets between 34 and 126 km reveal no evidence for Moho reflections. The large-offset recordings contain multicyclic bands of reflective phases from the middle to lower crust. The data were transformed into the intercept ime-ray parameter (~--p) domain to estimate local depth bounds. A subsequent 1D inversion using high-amplitude ~'-p arrivals shows that the reflective part of the crust ranges from the depths of 25 to 40 km. This part of the crust exhibits velocities increasing from about 6.5 to 7.5 km/s. Reflectivity modeling shows that the lower crust might consist of a zone of alternating low- and high-velocity layers with average velocity increasing. The average lower crustal velocity of about 6.9 km/s suggests a predomi-nantly mafic composition with interlayered intermediate to felsic components generating impedance contrasts that cause observable amplitudes from reflections at large offsets but not at clearly pre-critical and near-vertical distances. Our model is consistent with observations of interlayered sequences of gabbroic to ultramafic rocks with more felsic anorthositic and charnockitic rocks in the exposed lower crust of magmatic arc complexes. The lack of wide-angle Moho reflections might be explained by a gradational compositional boundary, or a transitional phase change from granulite to eclogite facies. 1

    Workshop - Amundsen Sea Embayment Tectonic and Glacial History - Programme and Abstracts

    Get PDF
    Overall Objective: Review existing data and identify priorities for future geoscience research (terrestrial, marine and airborne) in the Amundsen Sea embayment (ASE) region required to develop a better understanding of the past, present and future behaviour of this sector of the West Antarctic Ice Sheet (WAIS). Background: The ASE is the most rapidly changing sector of the WAIS and contains enough ice to raise global sea level by 1.2 m. Over the past few years considerable efforts have been made to acquire new data to improve knowledge of the geological structure, subglacial topography, continental shelf bathymetry and glacial history of this remote region. In this workshop we aim to review the current state of knowledge on the tectonic and glacial evolution of the Amundsen Sea embayment. Particular emphasis will be placed on work that will improve boundary conditions for ice sheet models (e.g. subglacial topography, shelf bathymetry, palaeotopography, heat flow and substrate types) and provide palaeo-data against which model outputs can be compared. There will also be a focus on plans and targets for future scientific drilling that will reveal the history of this sector of the WAIS and its sensitivity to major climate changes

    4D Antarctica: a new effort aims to help bridge the gap between Antarctic crust and lithosphere structure and geothermal heat flux

    Get PDF
    Seismology, satellite-magnetic and aeromagnetic data, and sparse MT provide the only available geophysical proxies for large parts of Antarctica\u2019s Geothermal Heat Flux (GHF) due to the sparseness of direct measurements. However, these geophysical methods have yielded significantly different GHF estimates. This restricts our knowledge of Antarctica\u2019s contrasting tectono-thermal provinces and their influence on subglacial hydrology and ice sheet dynamics. For example, some models derived from aeromagnetic data predict remarkably high GHF in the interior of the West Antarctic Rift System (WARS), while other satellite magnetic and seismological models favour instead a significantly colder rift interior but higher GHF stretching from the Marie Byrd Land dome towards the Antarctic Peninsula, and beneath parts of the Transantarctic Mountains. Reconciling these differences in West Antarctica is imperative to better comprehend the degree to which the WARS influences the West Antarctic Ice Sheet, including thermal influences on GIA. Equally important, is quantifying geothermal heat flux variability in the generally colder but composite East Antarctic craton, especially beneath its giant marine-based basins. Here we present a new ESA project- 4D Antarctica that aims to better connect international Antarctic crust and lithosphere studies with GHF, and assess its influence on subglacial hydrology by analysing and modelling recent satellite and airborne geophysical datasets. The state of the art, hypotheses to test, and methodological approaches for five key study areas, including the Amundsen Sea Embayment, the Wilkes Subglacial Basin and the Totten catchment, the Recovery and Pensacola-Pole Basins and the Gamburtsev Sublgacial Mountains/East Antarctic Rift System are highlighted

    Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila

    Get PDF
    Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior

    Recent magnetic views of the Antarctic lithosphere

    Get PDF
    Magnetic anomaly investigations are a key tool to help unveil subglacial geology, crustal architecture and the tectonic and geodynamic evolution of the Antarctic continent. Here, we present the second generation Antarctic magnetic anomaly compilation ADMAP 2.0 (Golynsky et al., 2018), that now includes a staggering 3.5 million line-km of aeromagnetic and marine magnetic data, more than double the amount of data available in the first generation effort. All the magnetic data were corrected for the International Geomagnetic Reference Field, diurnal effects, high-frequency errors and leveled, gridded,and stitched together. The new magnetic anomaly dataset provides tantalising new views into the structure and evolution of the Antarctic Peninsula and the West Antarctic Rift System within West Antarctica, and Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica, as well as key insights into oceanic gateways. Our magnetic anomaly compilation is helping unify disparate regional geologic and geophysical studies by providing larger-scale perspectives into the major tectonic and magmatic processes that affected Antarctica from Precambrian to Cenozoic times, including e.g. the processes of subduction and magmatic arc development, orogenesis, accretion, cratonisation and continental rifting, as well as continental margin and oceanic basin evolution. The international Antarctic geomagnetic community remains very active in the wake of ADMAP 2.0, and we will showcase some of their key ongoing study areas, such as the South Pole and Recovery frontiers, the Ross Ice Shelf, Dronning Maud Land and Princess Elizabeth Land

    Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies

    Get PDF
    The past three decades have seen a sustained and coordinated effort to refine the seismic stratigraphic framework of the Antarctic margin that has underpinned the development of numerous geological drilling expeditions from the continental shelf and beyond. Integration of these offshore drilling datasets covering the Cenozoic era with Antarctic inland datasets, provides important constraints that allow us to understand the role of Antarctic tectonics, the Southern Ocean biosphere, and Cenozoic ice sheet dynamics and ice sheet–ocean interactions on global climate as a whole. These constraints are critical for improving the accuracy and precision of future projections of Antarctic ice sheet behaviour and changes in Southern Ocean circulation. Many of the recent advances in this field can be attributed to the community-driven approach of the Scientific Committee on Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) research programme and its two key subcommittees: Paleoclimate Records from the Antarctic Margin and Southern Ocean (PRAMSO) and Palaeotopographic-Palaeobathymetric Reconstructions. Since 2012, these two PAIS subcommittees provided the forum to initiate, promote, coordinate and study scientific research drilling around the Antarctic margin and the Southern Ocean. Here we review the seismic stratigraphic margin architecture, climatic and glacial history of the Antarctic continent following the break-up of Gondwanaland in the Cretaceous, with a focus on records obtained since the implementation of PRAMSO. We also provide a forward-looking approach for future drilling proposals in frontier locations critically relevant for assessing future Antarctic ice sheet, climatic and oceanic change.We thank many people who collaborated, by sharing data and ideas, on geoscience research projects under the umbrella of the highly successful Paleoclimate Records from the Antarctic Margin and Southern Ocean (PRAMSO) and Palaeotopographic-Palaeobathymetric Reconstructions subcommittees of the Scientific Committee on Antarctic Research (SCAR) Past Antarctic Ice Sheet scientific program. This synthesis, which reflects our views, would not have been possible without the efforts of these many investigators, most of whom continue their collaborative Antarctic studies, now under the successor SCAR INSTANT programme. Chris Sorlien is thanked for drafting Fig. 3.6. We thank John Anderson, Peter Barrett, Giuliano Brancolini and Alan Cooper for their useful comments and for their continuous dedication to the past Antarctic Ice Sheet evolution reconstructions. We thank Nigel Wardell, Frank Nitsche and Paolo Diviacco for maintaining the Seismic Data Library System and the National Antarctic funding agencies of many countries (Australia, China, Germany, Italy, Japan, Korea, New Zealand, Russia, Spain, the UK, the United States) for supporting geophysical and geological surveys essential for Paleotopographic and Paleobathymetric reconstructions. We thank the International Ocean Discovery Program (IODP) for its support of recent expeditions that arose out of PRAMSO discussions. R.M. was funded by the Royal Society Te Apārangi NZ Marsden Fund (grant 18-VUW-089). C.E. acknowledges funding by the Spanish Ministry of Economy, Industry and Competitivity (grants CTM2017-89711-C2-1/2-P), cofunded by the European Union through FEDER funds. L.D.S. and F.D. were funded by the Programma Nazionale delle Ricerche in Antartide (PNRA16_00016 project and PNRA 14_00119). R.Larter and C.D.H. were funded by the BAS Polar Science for Planet Earth Programme and NERC UK IODP grant NE/J006548/1. S.K. was supported by the KOPRI Grant (PE21050). L.P. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 792773 WAMSISE. A.S. and S.G. were funded by NSF Office of Polar Programs (Grants OPP-1744970 (A.S.), -1143836 (A.S.), and -1143843 (S.G.). This is University of Texas Institute for Geophysics Contribution #3784. B.D. acknowledges funding from a Rutherford Foundation Postdoctoral Fellowship (RFT-VUW1804-PD). K.G. and G.K. were funded by AWI research programme Polar Regions and Coasts in the changing Earth System (PACES II) and the Sub-EIS-Obs programme by the Bundesanstalt fĂŒr Geowissenschaften und Rohstoffe (BGR). RL, RM, TN acknowledge support from MBIE Antarctic Science Platform contract ANTA1801
    • 

    corecore