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Abstract Rapid and efficient escape behaviors in response to noxious sensory stimuli are

essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated

escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger

sequential body bending and corkscrew-like rolling behavior. We identified a population of

interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are

activated by noxious heat, promote nociceptive behavior, and are required for robust escape

responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are

targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits,

and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro

neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves

intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons

coordinates modular elements of nociceptive escape behavior.

DOI: https://doi.org/10.7554/eLife.26016.001

Introduction
Nociception promotes the avoidance of harmful stimuli, and is a fundamental and evolutionarily con-

served somatic sense. Although the sensory neurons that detect noxious stimuli have been well stud-

ied in numerous organisms, how noxious stimuli are transformed to the complex sequence of

behaviors that protect animals from harm remains poorly understood. A key goal is to integrate ana-

tomical, connectivity, and behavioral data to provide a comprehensive view of nociceptive circuit

function.

Drosophila larvae provide an advantageous system in which to dissect nociceptive circuit organi-

zation, connectivity and function. Dendritic arborization (da) sensory neurons extend axon terminals

to discrete locations of the ventral nerve cord in a modality specific manner (Grueber et al., 2007;
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Merritt and Whitington, 1995). The stereotypical projections of da sensory axons, characterization

of da neuron function, and accessibility of central neurons afforded by large collections of Gal4 lines

(Gohl et al., 2011; Jenett et al., 2012; Li et al., 2014) permit dissection of somatosensory circuit

organization.

Class IV (cIV) da neurons are polymodal nociceptive neurons with receptive territories that

together tile the entire larval epidermis (Grueber et al., 2002; Hwang et al., 2007; Xiang et al.,

2010). cIV neural activity is both necessary and sufficient for generating defensive withdrawal (noci-

fensive) behavior in response to noxious stimuli (Hwang et al., 2007). Strong mechanical and high

thermal stimulation induce C-shaped body bending and corkscrew-like lateral turning (rolling) behav-

ior, followed by rapid forward locomotion, or escape crawl (Hwang et al., 2007; Ohyama et al.,

2013; Tracey et al., 2003). The behavioral responses of Drosophila larvae to noxious stimuli are

thus both diverse and sequential, suggesting complexity in the circuits downstream of primary sen-

sory neurons. Electron microscopic (EM) reconstruction of ventral nerve cord circuitry has identified

circuit elements downstream of cIV neurons, including Basin and Goro neurons, that integrate vibra-

tion and noxious stimuli (Ohyama et al., 2015). Basin cells receive multiple sensory inputs in distinct

regions of the arbor, and impinge on the command-like rolling Goro interneurons (Jovanic et al.,

2016; Ohyama et al., 2015). Although previous data suggest complexity in transduction and inte-

gration of inputs leading to nociceptive behavior, how microcircuits promote and coordinate the

rapid induction of sequential stages of nociceptive behavior remains unknown.

Here, we identify a population of somatosensory interneurons, the Down-and-Back (DnB) neu-

rons, which arborize in the nociceptive neuropil, and receive input from both nociceptive and gentle-

touch sensory neurons. DnBs are activated by heat stimuli in the noxious range, and their activity

promotes C-shaped bending and rolling, but not behaviors associated with gentle touch. EM recon-

struction indicates that DnBs receive almost exclusive sensory inputs, and provide major input to

premotor neurons and indirect input to Goro rolling command-like neurons. We find that DnBs pro-

mote the activity of Goro interneurons, and that DnB-induced rolling, but not C-bending, is depen-

dent on Goro activity. Thus, studies of DnB neurons reveal a sequential and modular organization of

escape behavior, and a node in the nociceptive circuit that coordinates essential components of

nocifensive behavior to enable rapid escape locomotion.

Results

Identification of interneurons that promote nociceptive behavior
To gain access to somatosensory circuitry, we examined integrase swappable in vivo targeting ele-

ment (InSITE) Gal4 lines (Gohl et al., 2011) for expression in the ventral region of the ventral nerve

cord (VNC) where class IV (cIV) nociceptive axons terminate (Grueber et al., 2007)(Figure 1A). We

identified two promising lines, 412-Gal4 and 4051-Gal4, that labeled segmental interneurons with

processes in the ventromedial neuropil (Figure 1B, Figure 1—figure supplement 1A). We gener-

ated 412-QF by standard InSITE swapping methods (Gohl et al., 2011) and verified overlapping

expression of 4051-Gal4 and 412-QF in the same population of interneurons in the VNC (Figure 1—

figure supplement 1B–C). 412-Gal4 also labeled a bilateral population of neurons in the brain lobes,

and faintly labeled other cell bodies in the VNC (typically 2, and up to 6, additional cells per hemi-

segment; Figure 1B), but did not label primary sensory neurons or motor axons (Figure 1—figure

supplement 2A–C’). We identified the two additional neuron types consistently labeled by 412-Gal4

and 4051-Gal4 in the nerve cord (Figure 1—figure supplement 2D): serotonergic A26e neurons

(Huser et al., 2012; Okusawa et al., 2014) (Figure 1—figure supplement 2E), and GABAergic

A27j neurons (Fushiki et al., 2016; Schneider-Mizell et al., 2016) (Figure 1—figure supplement

2F).

To characterize the morphology of 412-Gal4 segmental interneurons at single cell resolution, we

used the ‘Flip out’ technique (Basler and Struhl, 1994; Wong et al., 2002). Primary neurites project

to the ventromedial neuropil, where they arborize profusely (Figure 1C–C’). These medial processes

accumulated the dendritic marker, DenMark (Nicolaı̈ et al., 2010) (Figure 1—figure supplement

3A–A’). A single process emerged from this dendritic region and projected laterally and dorsally

back towards the cell body (Figure 1C’). These lateral projections accumulated the presynaptic

marker Bruchpilot.shortmCherry (BRP.shortmCherry) (Schmid et al., 2008) (Figure 1—figure
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Figure 1. Identification of candidate nociceptive interneurons. (A) Schematic showing the Drosophila larval CNS.

Red scaffold represents class IV (cIV) projections. Enlarged transverse section through ventral nerve cord (VNC) is

shown below. Color-coded regions depict modality specific locations where sensory axons terminate and motor

neuropil. (B) 412-Gal4 drives expression in interneurons in the VNC (arrowhead) and neurons in the brain lobes

Figure 1 continued on next page
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supplement 3B–B’). We also observed BRP.shortmCherry accumulation in medial dendrites, suggest-

ing both presynaptic and postsynaptic functions for these arbors (Figure 1—figure supplement 3B–

B’). Fitting with lineage-based nomenclature, the interneurons labeled by 412-Gal4 were identified

as the A09l neurons (Gerhard et al., 2017; Lacin and Truman, 2016). Because these neurons project

‘down’ to the ventromedial neuropil, arborize,

and sent a reverse projection back towards the

cell body, we refer to them as ‘Down-and-Back’

or DnB neurons.

Next, we assessed the behavioral consequen-

ces of activating 412-Gal4 neurons using both

thermogenetic and optogenetic approaches.

Thermogenetic activation of 412-Gal4 or 4051-

Gal4 neurons triggered rolling behavior (Fig-

ure 1—figure supplement 4A–C; Video 1). We

observed similar rolling behavior when we acti-

vated 412-Gal4 neurons using ReaChR (71% lar-

vae rolling, n = 48) in animals raised with all-

trans-retinal, an essential co-factor for channelr-

hodopsin (Figure 1—figure supplement 4D;

Video 1). We next genetically separated 412-

Gal4 brain expression from VNC expression by

combining the VNC-specific Gal4 inhibitor tsh-

Figure 1 continued

(arrow), anti-dsRed, green. (C–C’) Dorsal view of the morphology of DnB neuron in segment A3. Medial process is

indicated by an arrow and lateral projection by an arrowhead. An asterisk marks the cell body. (C’) Transverse

section of neuron in C. (D–F) Intersectional strategy to target GFP either to D) the brain and VNC, (E) brain only or

F) VNC only. Green channel shows anti-GFP labeling. (G) Percent exhibiting nocifensive rolling during dTrpA1

activation of subsets of 412-Gal4 neurons corresponding to panels D-F. (H) Schematic of cIV nociceptors (left) and

location of 412-Gal4 VNC neurons (right). (I) Schematic of different motor behaviors observed in response to cIV or

412-Gal4 VNC activation. Body bend only, B, larvae entered a curved C-shape but did not roll or crawl; Rolling, R,

animals entered C-shape and performed 360˚ rotations; Bend + crawling, BC, larvae attempted to crawl while

remaining in a C-shape. Red arrows show direction of locomotion. (J) Total amount of time spent in bent-body

positions (B + R + BC) upon dTrpA1-induced activation of cIV neurons and 412-Gal4 VNC neurons. (K) Percent of

time upon dTrpA1 activation spent in bent-body positions with crawling (black) rolling (blue) or paused (bend-only,

gray). (L) Percent of time spent during 29 s trial in bent-body positions: bend-crawl, rolling, or bend-only. (M) Plot

showing length of bend-crawl bouts in seconds upon cIV or 412-Gal4 VNC activation. Box plots show median

(middle line) and 25th to 75th percentiles with whiskers representing 10 to 90 percentiles. P values are indicated as

*p<0.05, ***p<0.001, as determined by One-way ANOVA with Tukey’s multiple comparison’s test (J), Kruskal-

Wallis with Dunn’s correction for multiple testing (L), or Mann-Whitney (M). Scale bars = 50 mm (B, D–F), 20 mm (C).

(See also Figure 1—figure supplements 1–4).

DOI: https://doi.org/10.7554/eLife.26016.002

The following source data and figure supplements are available for figure 1:

Source data 1. Summary table of graph data and statistical testing for thermogenetic activation experiments.

DOI: https://doi.org/10.7554/eLife.26016.007

Figure supplement 1. 4051-Gal4 expression pattern.

DOI: https://doi.org/10.7554/eLife.26016.003

Figure supplement 2. Further analysis of 412-Gal4 expression.

DOI: https://doi.org/10.7554/eLife.26016.004

Figure supplement 3. DnB polarity analysis.

DOI: https://doi.org/10.7554/eLife.26016.005

Figure supplement 4. 412-Gal4, 4051-Gal4, and off target activation.

DOI: https://doi.org/10.7554/eLife.26016.006

Figure supplement 4—source data 1. Summary table of graph data and statistical testing for activation

experiments.

DOI: https://doi.org/10.7554/eLife.26016.008

Video 1. 412-Gal4 activation induces nocifensive rolling

Video shows result of activating 412-Gal4 neurons with

dTrpA1 or ReaChR. For ReaChR videos, flashing light

indicates ‘lights on.’

DOI: https://doi.org/10.7554/eLife.26016.009
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Gal80 with 412-Gal4 (Figure 1D–G). Rolling probability was not increased when 412-Gal4 expression

was restricted to brain neurons (0% larvae rolling, n = 25; Figure 1G). Conversely, to determine

whether activity in VNC interneurons can trigger nociceptive rolling, we used an intersectional strat-

egy to drive Gal4 expression at the intersection of tsh-LexA and 412-Gal4 (412-Gal4 VNC)

(Figure 1F). Compared to control animals that did not roll (0% larvae rolling, n = 21), activating 412-

Gal4 neurons in the VNC, where DnBs reside, increased rolling probability (59% larvae rolling,

n = 30; Figure 1G). Activation of A26e and A27j, did not significantly increase rolling probability

(Figure 1—figure supplement 4E–G). These data indicate that activation of DnB neurons in the

412-Gal4 VNC pattern are likely responsible for inducing nociceptive behavior.

412-Gal4 VNC interneurons promote nociceptive C-bending and rolling
behavior modules
The behaviors induced by 412-Gal4 VNC neuron activation were similar to the rolling behavior gen-

erated by noxious stimuli (Hwang et al., 2007; Ohyama et al., 2013). Class IV (cIV) da neurons func-

tion as primary nociceptors in Drosophila larvae (Hwang et al., 2007). Nocifensive behavior consists

of multiple components organized as a sequence, including C-bending, rolling, and escape crawling.

To determine whether 412-Gal4 VNC activation induces the same components of the cIV neuron

triggered nocifensive response, with the same relative timing, we compared the behavioral conse-

quences of activating cIV neurons to activating DnB neurons (Figure 1H). We quantified the behav-

iors that occur during nocifensive escape by monitoring C-bending without coincident rolling (bend

only, B), and bending behavior that coincides with rolling (rolling; R). We also monitored hybrid

behaviors, such as bend-crawl (BC) in which crawling larvae were persistently bent (Figure 1I). We

found that cIV or 412-Gal4 VNC activation led to similar increase in overall time spent in a bent body

orientation (B, R, BC) compared to control animals (Figure 1J). However, cIV neuron activation more

often triggered rolling (R) behavior, whereas 412-Gal4 VNC activation was more likely to induce sus-

tained bending (B or BC) behavior (Figure 1K–L; Video 2). As an example, activation of 412-Gal4

VNC neurons caused larvae to spend more time performing BC behavior compared to activation of

cIV neurons (32% total time; bout mean = 7.8 s vs. 16% total time; bout mean = 2.7 s, respectively;

Figure 1M). We did not observe ‘escape crawl,’ or increased forward locomotion speed with mini-

mal turning, upon 412-Gal4 VNC activation. Thus, 412-Gal4 VNC activation can induce C-bending

both with and without nociceptive rolling, suggesting modularity in the nocifensive sequence.

While cIV nociceptor activation induces the entire nocifensive escape sequence (C-bendfirollfie-

scape crawl), 412-Gal4 VNC activation can induce rolling or C-bending without rolling, in a modular

manner. One possibility is that cIV and DnB neurons can recruit different motor programs based on

levels of neural activation. To further examine the behaviors induced by cIV and 412-Gal4 neuron

activation, we performed experiments to activate cIV or 412-Gal4 neurons at different intensities.

The progression of nocifensive behaviors were monitored over time using frustrated total internal

reflection imaging (Risse et al., 2013). We opto-

genetically activated DnB or cIV neurons using

525 nm LED at four different light intensities,

Lowest (~45 lx), Low (~200 lx), Moderate (~850

lx), Highest (~1450 lx), for 10 s by expressing

UAS-ReaChR, under the control of 412-Gal4, or

PPK1.9-Gal4, respectively. Again, we monitored

bending only (B), rolling (R), along with crawling

(C), and pausing (P). Bend-Crawl (BC) was not

observed in this experimental paradigm during

activation of either population of neurons. Behav-

ioral ethograms and bending analyses showed

that when cIV neurons were activated, animals

typically showed sharp increases in bending cou-

pled with rolling within 1 s of activation across all

activation intensities (Figure 2A,B,E). Conversely,

412-Gal4 activation led to persistent bending

increases, which only coincided with periods of

rolling within 10 s at Moderate levels of

Video 2. Activating 412-Gal4 neurons in the VNC

causes body bending Video shows result of activating

412-Gal4 neurons exclusively in the brain or the VNC,

compared to cIV activation

DOI: https://doi.org/10.7554/eLife.26016.010
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activation, and within 5–10 s at the Highest intensity (Figure 2C–E). These data suggest that cIV acti-

vation triggers rolling in concise bouts, while 412-Gal4 activation initially elicits bending, which may

or may not progress into rolling events, depending on the intensity of activation.

Together, these data suggest that whether 412-Gal4 activation of DnB neurons trigger bending

vs. rolling modules is dose-dependent, as low levels of activation induce persistent bending, and

higher levels of activation trigger bending followed by rolling. Activation of bending independently

of rolling suggests divergence in the downstream neural circuitry underlying nocifensive escape

behavior.

DnB neurons function downstream of cIV neurons
We next performed behavioral and physiological analysis to determine whether DnB neurons func-

tioned downstream of cIV nociceptors. We first tested whether DnB neurons respond to noxious

stimuli by performing calcium imaging experiments. We drove expression of GCaMP6m

(Chen et al., 2013) in DnB neurons using 412-Gal4 in a partially dissected preparation and applied a

local ramped heat stimulus to abdominal segments. We observed increased GCaMP6m fluorescence

in DnB neurons (identified by their morphology) beginning at 39˚C and plateauing at approximately

42˚C (Figure 3A–C; Video 3), fitting well with prior studies showing cIV neuron spiking above 38˚C

(Terada et al., 2016; Tracey et al., 2003; Xiang et al., 2010). Silencing cIV neurons reduced calcium

responses by 68% during noxious stimulation and delayed the onset of the calcium response

(Figure 3D–F; Video 3). Taken together, these data support a role for DnB neurons in the transduc-

tion of noxious heat stimuli from cIV sensory neurons.

We next tested whether 412-Gal4 neurons induce nociceptive behavior downstream of cIVs.

Silencing cIV neurons by driving tetanus toxin light chain (TNT) (Karuppudurai et al., 2014) under

the control of a cIV-specific driver R38A10-LexA reduced rolling behavior in a local nociceptive heat

assay (Figure 3G–H). Activation of DnBs using 412-Gal4 largely bypassed this inhibition and induced

rolling in 82% of animals (Figure 3I). Thus, these data suggest that DnB neurons act functionally

downstream of cIV activity.

DnB interneurons are required for robust nociceptive rolling and
C-bending
Since our data show that 412-Gal4 activation is sufficient to trigger bending and rolling, we next per-

formed silencing experiments to ask whether DnB neurons are required for bending and rolling dur-

ing nocifensive escape. To test the requirement for DnBs in nociceptive behavior, we took an

intersectional approach to further refine our manipulations. We first screened the Fly Light Gal4

database of approximately 7000 enhancer-based Gal4 expression patterns (Jenett et al., 2012;

Li et al., 2014). We identified several lines with broad expression in the VNC and performed a sec-

ondary screen on corresponding LexA versions by crossing them to 412-Gal4, 8X-lexAop2FLPL, and

10XUAS > stop > myr:GFP (Shirangi et al., 2013). This approach led to labeling at the intersection

of the LexA and Gal4 lines. We identified one line, R70F01-LexA, that supported intersectional

expression in abdominal DnB neurons, weakly in a small number of other VNC neurons, including

A27j neurons, and only rarely in one brain neuron (Figure 4—figure supplement 1A–B’). We used

the R70F01-LexA
T
412-Gal4 (R70F01

T
412) strategy to drive expression of Kir2.1-GFP

(Shirangi et al., 2013), a hyperpolarizing channel (Baines et al., 2001) (Figure 4A). As has been

described (Shirangi et al., 2013), we observed all-or-none expression of Kir2.1-GFP when larvae

were visualized after experiments to assess Kir2.1-GFP expression (32%, n = 125). Animals were clas-

sified as ‘non-silenced’ (i.e. lacking Kir2.1-GFP expression) controls or ‘R70F01
T
412-silenced’ (i.e.

with Kir2.1-GFP expression in VNC).

Upon exposure to a noxious heat surface (40˚C), control animals showed a typical nociceptive

sequence of (1) C-shaped body bending and rolling, (2) brief forward crawling with lateral bending

and occasional rolling (transition), and (3) rapid forward escape crawling (Figure 4B;Video 4). During

rapid forward crawling we observed no C-bending or rolling (Video 4). Since activation of 412-Gal4

VNC, which includes DnBs, increased both C-bending, and rolling, we first asked whether rolling was

affected in our global heat assay upon DnB silencing, using the R70F01
T
412 strategy. We found

that silencing R70F01
T
412 neurons did not abolish rolling, but significantly reduced the absolute

number of rolls per trial (rolling median = 0, R70F01
T
412 silencing; median = 3, control groups;
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Figure 4C), without affecting the order of the rolling bout in the nociceptive sequence, or the

latency to initiate the first roll (Figure 4—figure supplement 1C). R70F01
T
412-silenced animals

took more time to complete a roll (mean = 1.54 s) compared to control animals (mean = 0.84 s), indi-

cating that R70F01
T
412 neurons are important for rapid nociceptive rolling behavior (Figure 4D).

Figure 2. DnBs promote bending and rolling in a dose-dependent manner. (A, C) Behavior ethograms upon optogenetic stimulation of 412-Gal4 or

class IV neurons. Groups of animals expressing ReaChR in either population were subjected to optogenetic activation at different light intensities for 10

s: Lowest (~45 Lux), Low (~200. Lux), Moderate (~850 Lux) and Highest (~1450 Lux). Behavior events are color-coded: crawling (grey), pause (blue),

bending (green), and rolling (orange). (A) Behaviors triggered upon optogenetic activation of class IV neurons. Lowest, n = 24. Low, n = 26 Moderate,

n = 20; Highest, n = 23. (B) Behaviors triggered upon optogenetic activation of 412-Gal4 neurons. Lowest, n = 22. Low, n = 30; Moderate, n = 26;

Highest, n = 30. (C) Percent of larvae exhibiting crawling (grey), pausing (blue), rolling (orange) and bending (green) across different activation

intensities. (See also Figure 2E).

DOI: https://doi.org/10.7554/eLife.26016.011

The following source data is available for figure 2:

Source data 1. Summary table of behavioral responses to dose-dependent optogenetic activation.

DOI: https://doi.org/10.7554/eLife.26016.012
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Figure 3. DnBs are activated by noxious heat downstream cIV sensory neurons. (A) Representative heat maps showing Ca2+ responses in DnB cell

bodies (arrowhead) before (~24˚C) and during (~44˚C) local noxious heat stimulation of the body wall. (B) Individual Ca2+ responses (thin lines) and

average of all trials (bold) represented as DF/F0 in DnB cell bodies (n = 15). Larvae received local heat stimulation at segment A7 using a heat probe

that was increased from ~24–49˚C, then cooled to ~30˚C. (C) GCaMP signal binned for 25–38˚C (below noxious threshold), 39–49˚C (above noxious

threshold), and 48–31˚C (post-stimulus cool down). (D) Representative heat maps showing Ca2+ responses in DnB cell bodies at ~44˚C (arrowhead) with

or without cIVs silenced with R38A10-LexA driving TNT. (E) Individual Ca2+ responses (thin lines) and average of all trials (bold) in DnB cell bodies

during heating and cooling, Black lines represent control (n = 12) and red lines represent cIV silenced trials (n = 11). (F) GCaMP signal binned for 25–

38˚C (below noxious threshold), 39–49˚C (above noxious threshold), and 49–31˚C (post-stimulus cooling) for control and cIV silenced trials. (G) R38A10-

LexA driven 13XlexAop2-IVS-myr::GFP labels cIV sensory neurons (anti-GFP, green) and sparse labeling of brain neurons. (H) Percent of larvae rolling in

response to local noxious stimuli decreased when cIV neurons were silenced using R38A10-LexA to drive tetanus toxin light chain (TNT). (I) Percentage

of animals exhibiting rolling responses when 412-Gal4 neurons were induced by dTrpA1 with and without cIV-silencing via R38A10-LexA driven tetanus

toxin light chain (TNT). *p-value<0.05, **p-value<0.01, ***p- value <0.001 by Chi squared test with Bonferroni correction for cases of multiple testing

(H–I). Kruskal-Wallis with Dunn’s correction for multiple testing and post-hoc Unpaired T-test or Wilcoxon test (C) or post-hoc T-test or Wilcoxon test

(F). Scale bars = 70 mm (G).

DOI: https://doi.org/10.7554/eLife.26016.013

The following source data is available for figure 3:

Source data 1. Summary table of graph data and statistical testing for functional imaging and nociceptive experiments.

Genotypes, number of animals tested, graph data and statistical testing presented for DnB GCaMP imaging and nociceptive behavior experiments.

DOI: https://doi.org/10.7554/eLife.26016.014
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To determine whether silencing A27j neurons

contributed to the reduced rolling observed in

the R70F01
T
412 silencing experiments, we

expressed Kir2.1 in A27j neurons using R38H01-

Gal4 (Schneider-Mizell et al., 2016). We found

that silencing A27j neurons did not significantly

reduce the number of rolls during global noxious

stimulation (Figure 4—figure supplement 1D).

Thus, the reduction of nociceptive behavior

observed during R70F01
T
412 silencing appears

to be a consequence of reducing DnB function.

Given the 412-Gal4 VNC activation data sug-

gesting that DnB neurons also promote C-bend-

ing, independent of rolling, we asked how

bending behavior during nocifensive escape is

affected by the reduction of DnB activity. First,

we analyzed the amount of time spent bending

vs. rolling in R70F01
T
412-silenced animals (Fig-

ure 4—figure supplement 1E). We found a sig-

nificant decrease in the percentage of time that

R70F01
T
412-silenced larvae exhibited bend-rolling behavior. Bend-roll behaviors might have been

replaced by bend-crawling bouts, as we found a modest increase in the time that larvae spent in the

bend-crawl mode (Figure 4—figure supplement 1E). This conclusion is supported by the finding

that R70F01
T
412 silencing led to an increase in bending without rolling compared to control larvae

(49% vs. 14%) (Figure 4—figure supplement 1F). These results suggest that reduced rolling proba-

bility upon DnB silencing coincides with an increase in bending events that do not result in rolling,

and thus an abbreviated nocifensive sequence.

Given the preferential activation of bending behavior upon 412-Gal4 activation, we considered

whether R70F01
T
412 silenced larvae show deficits in the acquisition of the C-bend. To quantify cur-

vature along the larval body during nocifensive escape, we adapted a technique used to visualize

curvature during slime mold migration (Driscoll et al., 2011; Driscoll et al., 2012). This technique

allows for quantification and visual representation of curvature along the larval body. Briefly, 300

points were distributed along the boundary of the larval body (Figure 4E). A curvature index (CI)

was calculated at each point, and color-coded as a heat map of CI values (Figure 4E), assigning

deeper C-bends with higher CI values. We focused our analysis on curvature along the inner

C-bend, and plotted changes in local bending over time as kymographs (Figure 4F–G) to visualize

the evolution of C-bends over a nocifensive escape bout. During rolls (360˚ rotations) or attempted

rolls (<360˚ rotations), R70F01
T
412-silenced larvae displayed lower curvature index values (low CI

values in blue-yellow range) along the inner C-shape compared to non-silenced animals (high CI val-

ues in the orange-red range) (Figure 4F–H). To quantify the difference in CI distribution between

groups, we categorized CI values into either ‘High,’ or ‘Low’ curvature (see methods) and plotted

the percent of values that fell within each category per animal. When compared to non-silenced ani-

mals, R70F01
T
412-silenced animals had a significantly higher percentage of points in the Low curva-

ture range, and fewer in the High curvature range, during rolling, or ‘attempted’ rolling events

(Figure 4I). Together, these data further support a role for DnB neurons in generating C-bending

and rapid rolling. Moreover, rolling probability or efficiency may be related the extent of body

curvature.

To exclude non-specific motor defects caused by DnB suppression, we examined crawling behav-

ior while silencing DnB neurons with 412-Gal4 driven TNT (Sweeney et al., 1995). We found that

aside from a modest increase in crawling speed, crawling was intact, suggesting that DnB neurons

play a specific role in escape motor circuitry (Figure 4—figure supplement 1G).

DnB neurons receive synaptic input from nociceptive and gentle-touch
neurons
We next utilized an electron microscopic (EM) volume of the first instar larval CNS (Ohyama et al.,

2015) to reconstruct DnB upstream connections (Schneider-Mizell et al., 2016). We reconstructed

Video 3. DnB neurons are activated by noxious

thermal stimuli Video shows GCamp6m fluorescence in

the VNC of a partially dissected larvae, with and

without class IV neural activity. Arrows used to indicate

cell body, axon, and dendrites.

DOI: https://doi.org/10.7554/eLife.26016.015
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Figure 4. DnBs are required for body bending during nocifensive rolling. (A) Labeling DnB neurons using R70F01-LexA driving 8X-Aop2-FLPL, and 412-

Gal4 driving 10XUAS > Stop > Kir2.1-GFP (anti-GFP, green). (B) Global heat stimulus leads to rolling (top), transition period (middle), and an increase in

forward crawling speed (escape crawl; bottom). (C) Number of rolls per trial. ‘Non-silenced’ animals lacked Kir2.1-GFP expression and ‘R70F01
T
412-

silenced’ animals exhibited GFP expression. (D) Rolling duration of the 1st roll for animals that completed 360˚ rotations. (E) Schematic of larva with

curvature analysis. Program outlines boundary of larval body and assigns a curvature index value at each of 300 boundary points. The curvature values

are represented as a heat map along the larval body. (F) Representative kymograph showing curvature indices (CI) along C-bend (spanning boundary

points 150 and 300) in non-silenced animals during the duration of the first roll. Larval images above kymographs represent CI at each boundary point

position along the outline of the entire body at time points when the animal acquires a low curvature (left) or high curvature shape (right; indicated in

plots as vertical tracks). (G) Representative kymograph showing curvature indices along C-bend in R70F01
T
412-silenced animals. Kymograph is as

represented in (F). (H) Frequency distribution of concave curvature indices (CI) of all boundary points across the bending duration for animals that rolled

(360˚ turn) and ‘attempted’ rolling (i.e. 0–360˚ rotations) separated into low curvature (CI <0.027) and high curvature (CI >0.027) values. (I) Percentage of

Figure 4 continued on next page
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bilaterally symmetric DnB neurons in segment A1 (Figure 5A)(Gerhard et al., 2017). DnB neurons in

A1 receive 45.5% of their input from cIV neurons, consistent with a role in nociceptive behavior.

Additional inputs come primarily from other sensory neuron subtypes. Mechanosensitive cIII neurons

showed 15% cumulative input, class II neurons showed 4% cumulative input, and external sensory

(es) neurons showed 3% cumulative input (Figure 5B–D). Inputs to DnB neurons were primarily sen-

sory, with the sole non-sensory input provided by the putative local inhibitory handle-A neurons

(Jovanic et al., 2016)(Figure 5B). These findings suggest that DnB neurons integrate inputs from

multiple sensory modalities, with dominant input from cIV nociceptors.

We next examined the localization of sensory inputs along the DnB neuron. EM data showed that

the axons of cIII, cIV, and es neurons all provide input onto DnB dendrites (Figure 5—figure supple-

ment 1A). cII axons are distinguished from other somatosensory axon projections by their short col-

lateral branches (Grueber et al., 2007), which led to the proposal that they might connect with

divergent downstream circuits. Interestingly, the input to DnBs from cII neurons came entirely from

these collateral axon branches onto the lateral-most DnB axons (Figure 5—figure supplement 1A),

raising the possibility of presynaptic modulation of DnBs by cII neurons.

cIII and cIV axons terminate in distinct adjacent areas of the neuropil (Grueber et al., 2007),

implying that they synapse on different regions of the DnB dendrite (Figure 5—figure supplement

1B–B’’). Indeed, co-labeling DnBs and cIV axons revealed overlap between DnB medial dendrites

and cIV axon terminals (Figure 5—figure supplement 1C–C’’). A lateral domain of the DnB dendritic

field did not overlap with the cIV terminals, but did overlap with cIII axons (Figure 5—figure supple-

ment 1D–D’’) labeled by nompC-LexA

(Shearin et al., 2013). Our EM and anatomical

studies therefore reveal that three distinct sen-

sory inputs target DnB neurons in a spatially seg-

regated manner on dendrites and axons.

Notably, activation of DnBs using 412-Gal4

across different intensities did not result in gen-

tle-touch responses (i.e. recoil, backward crawl,

head turns) (Kernan et al., 1994), but did pro-

duce an increase in pausing, which can be either

a gentle-touch or light response (Figure 2)

(Kernan et al., 1994; Lacin and Truman, 2016).

Moreover, silencing 412-Gal4 neurons using TNT

(Sweeney et al., 1995) did not disrupt responses

to gentle touch (Figure 4—figure supplement

1H–I). Thus, despite connections with gentle

touch sensory neurons, DnB neurons do not

Figure 4 continued

boundary points that fall into the category of low curvature (CI <0.027) and high curvature (CI >0.027) values. Scale bar = 50 mm (A). Box plots show

median (middle line) and 25th to 75th percentiles with whiskers representing 10 to 90 percentiles. P values are indicated as *p<0.05, **p<0.01

***p<0.001, as tested by Kruskal Wallis with Dunn’s correction followed by post hoc Mann Whitney (C), Mann-Whitney (D), or MANOVA with bonferroni

correction, followed by posthoc unpaired T-test (I). (See also Figure 4—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.26016.016

The following source data and figure supplements are available for figure 4:

Source data 1. Summary table of graph data and statistical testing for silencing experiments.

Genotypes, number of animals tested, graph data and statistical testing presented for R70F01
T
412 silencing experiments and curvature analysis.

DOI: https://doi.org/10.7554/eLife.26016.018

Figure supplement 1. Intersectional labeling strategy, effect of silencing A27j neurons and effect of silencing 412-Gal4 neurons on somatosensory

behavior.

DOI: https://doi.org/10.7554/eLife.26016.017

Figure supplement 1—source data 1. Summary table of graph data and statistical testing for silencing experiments.

Genotypes, number of animals tested, graph data and statistical testing presented for silencing experiments on nociceptive, gentle-touch and crawling

assays.

DOI: https://doi.org/10.7554/eLife.26016.019

Video 4. Silencing R70F01
T
412 neurons reduces body

curvature during rolling Video shows defective rolling

upon R70F01
T
412 neuron silencing

DOI: https://doi.org/10.7554/eLife.26016.020
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appear to play a major role in gentle-touch responses.

EM reconstruction reveals direct connections to premotor neurons and
nociceptive integrators
To gain insights into circuit mechanisms underlying nociceptive motor behaviors we performed EM

reconstruction of downstream partners of DnB neurons. We identified the complete set of neurons

that receive DnB synaptic input using this approach (Ohyama et al., 2015; Schneider-Mizell et al.,

2016) (Figure 6A,D). The neurons with the highest numerical connection with DnB neurons (>3 syn-

apses; Figure 6B) could be broadly divided into two groups: ‘nociceptive integrators’ (Figure 6A,C)

and premotor neurons (Figure 6D–E). Nociceptive integrators, exemplified by TePn05

(Gerhard et al., 2017), are nodes of convergence of multiple nociceptive neuron types (Figure 6A,

C). TePn05 makes ascending projections along the nerve cord that are postsynaptic to DnBs and cIV

sensory neurons, and that are presynaptic to Basin-2, 4 nociceptive interneurons (Figure 6A)

(Ohyama et al., 2015). TePn05 thus provides a path for communication between DnB and Basin

circuits.

DnB connections with premotor neurons provide a potential route to drive escape behavior, par-

ticularly the robust C-bending. DnBs form the most synapses with segmentally repeating premotor

neurons: A27k, A01d-3, A02g and A02e, (6–18 synapses/hemisegment) (Figure 6D–E). With one

exception, synapses are made on the ipsilateral side of the nerve cord (Figure 6E). A01d-3

Figure 5. Connectome of sensory and interneuron inputs to DnB neurons. (A) First instar larval brain with bilateral reconstruction of DnB neuron

morphology in segment A1. Cyan and red dots indicate input and output synapses, respectively. Top, dorsal view; bottom, transverse view. (B)

Connectome of inputs onto DnB neurons in right and left A1 hemisegments. Numbers of synaptic connections between segment A1 neurons in top

row and DnB neurons are shown. Width of arrow corresponds to degree of synaptic connectivity. Circles represent individual neurons, and hexagons

represent groups of neurons. (C) Percent of input provided to total postsynaptic sites on right and left A1 DnB as a function of cell class (not restricted

to segment A1). cIV nociceptors provide dominant input to DnBs. (D) Electron micrographs of DnB-cIV and DnB-cIII synapses. (See also Figure 5—

figure supplement 1).

DOI: https://doi.org/10.7554/eLife.26016.021

The following source data and figure supplement are available for figure 5:

Source data 1.

DOI: https://doi.org/10.7554/eLife.26016.023

Figure supplement 1. Down-and-Back neurons receive spatially segregated sensory input.

DOI: https://doi.org/10.7554/eLife.26016.022
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interneurons receive input from contralateral DnB neurons (Figure 6E), and project to interneurons

in contralateral posterior segments. Some premotor neurons downstream of DnB are implicated in

duration and propagation of segmental waves during larval forward locomotion, including A02g and

A02e (part of period-positive median segmental interneuron, or PMSI, inhibitory interneurons),

(Kohsaka et al., 2014), and A27k (Fushiki et al., 2016; Zwart et al., 2016). DnBs also make modest

connections with motor neurons innervating muscle LT1 (Zwart et al., 2016)(Figure 5B). The con-

nections of DnB to multiple premotor neurons could promote changes in body curvature during

nociceptive escape behavior.

Notably, DnB output synapses to these different groups of downstream neurons are anatomically

segregated. Nociceptive integrators receive input from DnB presynaptic sites located on the medial

Figure 6. Connectome of DnB to premotor and nociceptive interneuron outputs. (A) First instar larval CNS showing reconstruction of DnB neurons

(green), and nociceptive integrating interneurons (purple). Output synapses are indicated in red and input synapses in cyan. Nociceptive interneurons

primarily receive input from output sites on DnB dendrites. (B) Percent of top hits’ (>3 synapses) output from right (DnB a1R) and left (DnB a1L) A1 DnB

neurons as a function of cell type. Premotor circuits and nociceptive integrators are dominant outputs of DnB neurons. (C) Identities of nociceptive

integrating targets for right and left DnB neurons in A1. Numbers of synapses reconstructed are indicated. Width of arrow corresponds to degree of

synaptic connectivity. (D) First instar larval CNS showing reconstruction of DnB neurons (green), premotor (purple), and motor targets (yellow). Premotor

neuron output synapses (red dots) located primarily in motor domain (arrowhead). (E) Identities of premotor targets for right and left DnB neurons in

A1. Numbers of synapses reconstructed are indicated. Dominant outputs are A27k and A01d-3 premotor neurons. Width of arrow corresponds to

degree of synaptic connectivity. (See also Figure 6—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.26016.024

The following source data and figure supplement are available for figure 6:

Source data 1. Summary table for output connectivity graph.

Percentage of top hit neurons (>3 synapses with DnB) that fall into the category: premotor, motor, or nociceptive integrator neurons.

DOI: https://doi.org/10.7554/eLife.26016.026

Figure supplement 1. Additional properties of Down-and-Back output signaling.

DOI: https://doi.org/10.7554/eLife.26016.025
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DnB dendrite, whereas premotor neurons receive synaptic inputs from lateral DnB axons (Figure 6A,

D arrowheads).

We additionally used immunolabeling and EM to examine the transmitter identity of DnB neu-

rons. First, we introduced cha3.3kb-Gal80 (Kitamoto, 2002), which expresses in a large subset of

excitatory cholinergic neurons, into 412-Gal4, UAS-mCD8:GFP animals. We found a reduction in

GFP signal in both cell bodies and in medial processes of DnB neurons (Figure 6—figure supple-

ment 1A–A’). Next, we labeled cholinergic neurons with an antibody against choline acetyltransfer-

ase (ChAT) and observed co-localization between DnB neurons and ChAT, but not with vGLUT or

GABA (Figure 6—figure supplement 1B–D’’). We confirmed a cholinergic identity by co-labeling

412-Gal4 and ChAT tagged with eGFP (Nagarkar-Jaiswal et al., 2015). We observed ChAT-eGFP

expression in DnB cell bodies and axonal processes (Figure 6—figure supplement 1E–E’’’).

Together these data support a cholinergic identity of DnB interneurons.

We noted in EM sections that in addition to small clear vesicles characteristic of acetylcholine

release, large dense core vesicles accumulate at many DnB presynaptic sites, which is indicative of

aminergic or peptidergic signaling (Figure 6—figure supplement 1F). Thus, in addition to affecting

nociceptive circuitry by direct synaptic connections, DnB neurons may modulate circuitry through

neuropeptidergic or aminergic signaling. Consistent with this possibility, we found that PreproANF

fused with emerald GFP, which accumulates at peptidergic output sites (Rao et al., 2001), overlaps

with DnB axons, suggesting that DnBs possess the machinery to package and release neuropeptides

(Figure 6—figure supplement 1G).

Premotor neurons and command neurons acting downstream of DnBs
Our EM reconstruction revealed that DnB neurons had the highest number of synaptic connections

with premotor neurons. A02e and A02g belong to the PMSI group (Kohsaka et al., 2014). To exam-

ine roles for PMSI neurons in nociceptive behavior, we silenced this group of cells using period-Gal4

and monitored rolling behavior on the global heat assay. We found that silencing of period-Gal4

neurons significantly reduced the number of rolls per trial without significantly affecting the rolling

bout length or the percent of animals exhibiting bending and rolling. (Figure 7—figure supplement

1A–D). We note that PMSIs also include A02a-j neurons (Kaneko et al., 2017), so although our

manipulations are not specific to A02e and A02g neurons, these results are consistent with PMSI

neurons, perhaps including those downstream of DnBs, promoting robust nocifensive behavior.

The direct pathways from DnB neurons to nociceptive integrators (Figure 6C; Figure 7A) provide

a possible functional link with Goro neurons, command-like neurons for rolling (Ohyama et al.,

2015). Goros receive indirect input from Basin nociceptive interneurons to promote rolling behavior

(Ohyama et al., 2015). EM reconstruction identified multiple pathways between DnB and Goro,

through A09e and TePn05 neurons (Gerhard et al., 2017)(Figure 7A). The DnB-A09e pathway con-

sists of a connection between DnB and A09e neurons, which receive bilateral input from DnBs

(Figure 7A). A09e connects with Goro via A02o ‘Wave’ (Takagi et al., 2017)and A05q neurons. The

DnB-TePn05 pathway (Figure 7A) consists of a connection between DnBs and TePn05, which synap-

ses with both Basin-2,4, and Basin-3 populations. Basins make extensive connections with A23g, and

A05q, which synapse onto Goro (both directly and indirectly through Wave) (Ohyama et al., 2015).

A05q links to Goro have been functionally validated (Ohyama et al., 2015). Thus, A09e and TePn05

networks may underlie DnB-Goro communication.

We asked whether DnBs are functionally connected to Goro rolling command-like neurons. We

activated DnB neurons using Chrimson (Klapoetke et al., 2014), and monitored calcium responses

in Goro using GCaMP6s (Figure 7B). We targeted Chrimson activation to the entire 412-Gal4 CNS

pattern using a 630 nm LED or to 1–2 segments of 412-Gal4 neurons in the nerve cord, using a

phaser module to target the multiphoton laser. Both whole CNS and segmentally targeted activation

generated calcium increases in Goro axons (Figure 7C and E). Activating 412-Gal4 brain neurons,

which do not include DnBs, did not alter Goro responses (Figure 7D). These results support a func-

tional link between DnB neurons and Goro rolling command-like neurons.

Given that C-bending and rolling could be activated separately, we asked whether DnB activity

might coordinate rolling through Goro command neurons, and bending through alternate pathways.

To test this hypothesis, we activated DnBs while selectively silencing Goro activity (412-Gal4+ Goro-)

using 16E11-LexA (Ohyama et al., 2015) (Figure 7F). As expected, control animals (412-Gal4+)

showed nociceptive behavior consisting of C-bending and rolling (61% bendfiroll, 39% bendfino
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Figure 7. DnBs promote rolling, but not C-bending, through Goro network. (A) Wiring diagram of DnB to Goro

rolling command-like neuron. Percentage represents fraction of total dendritic inputs provided by upstream

neuron class. Percentages may underestimate contribution of neuron class due to lack of data from all segments.

Number of reconstructed synapses is indicated in parentheses. Hexagons represent groups of neurons. (B)

Experimental setup for Goro imaging experiments. Activity in DnB neurons is driven by UAS-Chrimson expression

and optogenetic stimulation across the entire CNS (C), brain only (D) or 1–2 segments of DnB neurons in the VNC

Figure 7 continued on next page
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roll)(Figure 7G). By contrast, 412-Gal4+ Goro- larvae showed bending behavior without rolling upon

thermogenetic activation (12% bendfiroll, 88% bendfino roll) (Figure 7G; Video 5). Correspond-

ingly, we observed a significant decrease in total number of rolls exhibited by 412-Gal4+ Goro- larvae

(Figure 7H). These data suggest that C-bending and rolling are separable and coordinated by DnB

activity to generate a rapid escape locomotion sequence.

Discussion
Nocifensive escape behavior in Drosophila larvae consists of C-shaped body bending and rolling, fol-

lowed by rapid forward crawling (Hwang et al., 2007; Ohyama et al., 2013). Recent studies have

begun to identify circuits that mediate nocifensive behaviors (Kaneko et al., 2017; Ohyama et al.,

2015; Yoshino et al., 2017). Prior work identified Basin neurons as multisensory interneurons that

drive rolling behavior in response to vibration

and noxious stimuli, and identified downstream

Goro as command-like neurons for rolling

(Ohyama et al., 2015). Here, we have identified

and characterized DnB interneurons that are

essential for nocifensive behavior in Drosophila

larvae (Figure 8). DnB neurons are direct targets

of nociceptive cIV neurons and multiple mecha-

nosensory cell types, including cII and cIII gentle

touch da neurons and es neurons. Thus, DnBs

provide a potential node for multisensory inte-

gration of tactile and noxious stimuli. The conver-

gence of input from cIII gentle-touch receptors

and cIV nociceptors onto DnB neurons is reminis-

cent of vertebrate interneurons that receive

direct excitatory input from C-fiber/Aq nocicep-

tors and Aß mechanoreceptors (Duan et al.,

2014). Based on these studies nociceptive inputs

appear to be integrated with multiple

Figure 7 continued

(E). GCaMP6s was targeted to Goro neurons using 69E06-LexA to monitor calcium responses. (C) DF/F0 measured

in Goro axons (n = 6) upon full CNS optogenetic activation of 412-Gal4 neurons. (D) DF/F0 measured in Goro

axons (n = 4) upon brain only (lacking DnBs) optogenetic activation of 412-Gal4 neurons. (E) DF/F0 measured in

Goro axons (n = 7) upon optogenetic activation of 1–2 DnB neurons. (F) Experimental setup for DnB

thermogenetic activation and Goro silencing. (G) Thermogenetic activation of 412-Gal4 neurons (412-Gal4+) leads

to dominant bend-roll nociceptive phenotype (bendfiroll, orange). A minority of larvae show bending without

rolling responses (bendfi no roll, green). Coincident silencing of Goro neurons (412-Gal4+Goro-) subdues rolling

responses but does not disrupt bending. (H) Total number of rolls shown by control larvae (412-Gal4

thermogenetic activation; black open circles) and upon coincident Goro silencing (red open circles). Error bars

represent standard deviation. P values are indicated as *p<0.05, **p<0.01 ***p<0.001, as tested by Mann Whitney.

List of neurons included at each node can be found in supplementary file. (See also Figure 7—figure supplement

1).

DOI: https://doi.org/10.7554/eLife.26016.027

The following source data and figure supplements are available for figure 7:

Source data 1. Summary table of graph data and statistical testing for Goro functional imaging and behavior

experiments.

DOI: https://doi.org/10.7554/eLife.26016.029

Figure supplement 1. Silencing PMSI premotor neurons reduces rolling.

DOI: https://doi.org/10.7554/eLife.26016.028

Figure supplement 1—source data 1. Summary table of graph data and statistical testing for PMSI silencing

experiments.

Genotypes, number of animals tested, graph data and statistical testing presented for PMSI silencing experiments.

DOI: https://doi.org/10.7554/eLife.26016.030

Video 5. Activating 412-Gal4 while silencing Goro

neurons biases larvae towards bending without rolling.

Video shows bending without rolling when 412-Gal4

neurons, including DnBs, are activated while

suppressing Goro activity

DOI: https://doi.org/10.7554/eLife.26016.031
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Figure 8. Summary model for DnB neurons controlling nocifensive escape. DnB neurons receive dual

mechanosensory and nociceptive input, and promote nocifensive escape behavior via co-activation of downstream

premotor circuits and command-like Goro neurons.

DOI: https://doi.org/10.7554/eLife.26016.032
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mechanosensory submodalities by Basin and DnB interneurons.

EM reconstruction of DnB targets supported divergent major downstream circuitry. Output syn-

apses on DnB axons converge on premotor neurons, at least some of which promote peristaltic

wave propagation during locomotion (Fushiki et al., 2016; Kohsaka et al., 2014). Other down-

stream neurons receive input from presynaptic sites on the DnB dendrite, and lead to Goro rolling

command-like neurons (Ohyama et al., 2015). The spatial segregation of DnB output sites may mir-

ror a functional segregation of downstream circuitry into bending and rolling modules. It is still

unclear which muscle groups are recruited and how segments coordinate during body bending and

rolling. We provide evidence that silencing the PMSI cohort, which includes direct DnB targets A02g

and A02e, reduces rolling behavior. PMSIs are glutamatergic inhibitory premotor neurons that termi-

nate motor neuron bursting to regulate crawling speed Kohsaka et al., 2014). Future work to selec-

tively silence groups of premotor neurons will help to elucidate their role in nocifensive escape

downstream of DnBs. Although silencing DnB neurons slightly increased the speed of forward loco-

motion, overall, forward crawling remained intact. Given that peristaltic waves also consist of seg-

mental contractions, links to premotor neurons provide candidate neurons for dual control of

crawling and C-shape bending behavior. Notably, DnB neurons target motor neurons innervating

LT1 muscles, which have been implicated in larval self-righting behaviors (Picao-Osorio et al., 2015).

Self-righting consists of a C-shape type body bend, and 180˚ turn, so it is possible that LT1 muscles

facilitate curved body bends that underlie both self-righting and rolling behavior. We note that the

impact of DnB neurons on nociceptive circuits is likely to be more broad than indicated by synaptic

connections, since EM and marker expression suggest that DnB neurons are peptidergic. Identifica-

tion of the putative neuropeptide expressed by DnB neurons, and physiological effects, will be an

important future direction, particularly given the important role of neuropeptides in vertebrate pain

pathways. (Faris et al., 1983; Mantyh et al., 1997; Ribeiro-da-Silva and De Koninck, 2008;

Sun et al., 2004), and recent evidence that mechanical nociception in larvae is under peptidergic

control (Hu et al., 2017).

Prior data showed that rolling is directional and is advantageous for dislodging attacking parasit-

oid wasps (Hwang et al., 2007). Efficient rolling occurs coincident with deep C-shaped body bends,

but the significance of these body bends for escape behavior has not been determined. DnB neural

circuitry appears to be critically important for evoking body bend behavior prior to and during noci-

fensive rolling. Bending may provide the initial, most rapid, form of withdrawal from a noxious stimu-

lus, and may subsequently support rolling locomotion by orienting and focusing the energy of

muscle contraction into lateral thrusts. Re-orientation of denticle belts, triangle-shaped extensions of

the cuticle, may also aid rapid lateral locomotion by providing substrate traction. Compromised

escape rolling upon DnB inactivation may therefore arise both from weakened Goro activation and

decreases in body bend angle. Understanding the circuit mechanisms that promote bending down-

stream of DnB neurons, and the muscle activities and physical mechanisms that underlie rolling

behavior are important future aims.

Analysis of DnB function revealed modular control of nocifensive escape behavior, consistent with

EM reconstruction data. When DnB neurons were ectopically activated we observed C-shaped body

bending that was often, but not always, associated with rolling. Other, non-rolling, animals bent with

minimal crawling, or bent persistently while attempting to crawl forward. These observations pro-

vided initial evidence that C-shaped bending and rolling control circuits are separable, and that noci-

fensive bending could be combined with other behaviors, like pausing or crawling. Our loss of

function data supported bending as a primary motor output of DnB activity, with probabilistic activa-

tion of rolling motor programs. These behaviors could conceivably be linked, such that reduction in

bending compromises rolling ability, or could arise from parallel influence of DnB activity on bending

and rolling as suggested by EM reconstruction. Consistent with an important role for DnBs in pro-

moting rolling, silencing Goro while activating DnB neurons promoted persistent bending without

rolling, and uncoordinated snake-like forward crawling. This result further implicates a separate pre-

motor circuitry in nocifensive body bending. These data further suggest that the bend-roll sequence

must be tightly regulated by interactions between the parallel bend-roll premotor circuits, such that

bending occurs first to facilitate rolling, which occurs second. However, bending can occur without

being followed by rolling, indicating C-shaped bending itself is not sufficient to trigger rolling. Such

independent, but sequentially regulated behavioral modules are consistent with hierarchical models

of sequence generation as in fly grooming (Seeds et al., 2014), human speech (Lashley, 1951), roll-
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crawl sequence (Ohyama et al., 2013), and hunch-bend sequence (Jovanic et al., 2016). We note

however, that although bending and rolling are sequential, they co-occur for much of the defensive

behavior sequence, in contrast to such sequential and non-overlapping behavioral sequences. Eluci-

dating the mechanisms of timing and interaction between the different circuit modules (bend vs roll)

identified therefore promises to shed light on the general mechanisms of circuit implementation of

sequence generation and co-ordination between different motor modules.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

strain, strain background
(D. melanogaster)

PB[IT.Gal4]0412 PMID:21473015

strain, strain background
(D. melanogaster)

R70F01-LexA PMID: 23063364 RRID:BDSC_53628

strain, strain background
(D. melanogaster)

R69E06-LexA PMID: 23063364 RRID:BDSC_54925

strain, strain background
(D. melanogaster)

ppk1.9-Gal4 PMID: 12956960

strain, strain background
(D. melanogaster)

20X-UAS-IVS-GCaMP6m PMID: 23868258 RRID:BDSC_42748

strain, strain background
(D. melanogaster)

UAS-dTrpA1 PMID: 18548007 RRID:BDSC_26263;
RRID:BDSC_26264

strain, strain background
(D. melanogaster)

UAS-ReaChR PMID: 23995068 RRID:BDSC_53749;
RRID:BDSC_53741

strain, strain background
(D. melanogaster)

tub > Gal80>; tsh-LexA,
8X-LexAop2-FLPL/CyO-RFP-tb;
UAS-10X-IVS-myr:GFP

Gift from Dr. Marta Zlatic

strain, strain background
(D. melanogaster)

tub > Gal80>; tsh-LexA,
8X-LexAop2-FLPL/CyO-RFP-tb;
UAS-dTrpA1/TM6B

Gift from Dr. Marta Zlatic

strain, strain background
(D. melanogaster)

UAS-TNT PMID: 7857643 RRID:BDSC_28838

strain, strain background
(D. melanogaster)

UAS-TNTi PMID: 7857643 RRID:BDSC_28840

strain, strain background
(D. melanogaster)

tsh-Gal80 Gift from Dr. Julie Simpson

strain, strain background
(D. melanogaster)

8X-LexAop2FLPL;
10X-UAS > Stop > myr:GFP

PMID: 24183665

strain, strain background
(D. melanogaster)

8X-LexAop2FLPL;
10X-UAS > Stop > Kir2.1-GFP

PMID: 24183665

strain, strain background
(D. melanogaster)

13X-LexAop2-IVS-TNT::HA PMID: 24507194 Gift from Dr. Chi-Hon Lee

strain, strain background
(D. melanogaster)

LexAop-Kir2.1 PMID: 24991958 Gift from Dr. Barry Dickson

strain, strain background
(D. melanogaster)

20xUAS-CsChrimson-mCherry PMID: 27720450

strain, strain background
(D. melanogaster)

13xLexAop2-IVS-GCaMP6s PMID: 23868258

strain, strain background
(D. melanogaster)

yw; Mi{PTGFSTF.0}
ChATMI04508-GFSTF.0

PMID: 26102525 ID_BSC: 60288

antibody anti-GFP Abcam RRID: AB_300798 1:1000

antibody anti-DsRed Clontech RRID:AB_10013483 1:250

antibody anti-Fasciclin II DSHB RRID:AB_528235 1:100

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

antibody anti-5HT Sigma RRID:AB_477522 1:1000

antibody anti-dvGLUT PMID: 15548661 RRID:AB_2314347 1:10,000

antibody anti-GABA Sigma RRID:AB_477652 1:100

antibody anti-ChAT DSHB RRID:AB_2314170 1:100

Fly stocks
(1)PB[IT.Gal4]0412 (referred to in the text as 412-Gal4; (Gohl et al., 2011), (2) UAS-mCD8-GFP

(Lee and Luo, 1999), (3) ppk-CD4-tdTom (Han et al., 2011), (4) hsFLP;Sp/CyO;UAS > CD2>CD8

GFP (Basler and Struhl, 1994; Wong et al., 2002), (5) UAS-BRP.shortmCherry (Schmid et al., 2008)

was provided by Dr. Richard Mann (Columbia University), (6) UAS-DenMark (Nicolaı̈ et al., 2010), (7)

dTrpA1-QF (Bloomington Stock Center), (8) 20X-UAS-IVS-GCaMP6m (Chen et al., 2013), (9) UAS-

dTrpA1 (Hamada et al., 2008), (10) UAS-ReaChR (Lin et al., 2013). (11) tub >Gal80>; tsh-LexA, 8X-

LexAop2-FLPL/CyO-RFP-tb; UAS-10X-IVS-myr:GFP, and (12) tub >Gal80>; tsh-LexA, 8X-LexAop2-

FLPL/CyO-RFP-tb; UAS-dTrpA1/TM6B were a gift from Dr. Marta Zlatic (Janelia Research Campus,

Virginia). (13) UAS-TNT and (14) UAS-TNTi (Sweeney et al., 1995), (15) tsh-Gal80 was a gift from

Julie Simpson (UCSB, California), (16) R70F01-LexA (Jenett et al., 2012), (17) 8X-LexAop2FLPL;10X-

UAS > Stop > myr:GFP, and (18) 8X-LexAop2FLPL;10X-UAS > Stop > Kir2.1-GFP (Shirangi et al.,

2013)were a gift from Dr. James Truman (Janelia Research Campus, Virginia). (19) 13X-LexAop2-IVS-

TNT::HA(Karuppudurai et al., 2014), (20) R38A10-LexA(Jenett et al., 2012), (21) ppk1.9-Gal4

(Ainsley et al., 2003), (22) w-; Sp/CyO; 13X-LexAop2-IVS-myr:GFP/TM3,Sb,e (23) Sp/CyO;nompC-

LexA, 10X-LexAop2-myr-GFP/TM6B, (24) R16E11-LexA (25) R69E06-LexA, (Jenett et al., 2012), (26)

LexAop-Kir2.1 (Feng et al., 2014) was a gift drom Dr. Barry Dickson (Janelia Research Campus, Vir-

ginia), (27) 20xUAS-CsChrimson-mCherry (Jovanic et al., 2016), (28) PB[IT.Gal4]4051 (T. Clandinin

and W. Grueber, unpublished), (29) [IS.QF]0412, (30) 13xLexAop2-IVS-GCaMP6s (Chen et al., 2013),

(31) R38H01-Gal4 (Jenett et al., 2012), (32) Trh-Gal4 (Alekseyenko et al., 2010) (33) Per-Gal4

(Kaneko and Hall, 2000), (34) yw; Mi{PTGFSTF.0}ChATMI04508-GFSTF.0 (Nagarkar-Jaiswal et al.,

2015), (35) UAS-Kir2.1-eGFP (Baines et al., 2001)

Immunohistochemistry
Immunohistochemistry was performed essentially as described (Matthews et al., 2007). Third instar

larvae were dissected in 1X PBS, fixed in 4% paraformaldehyde (Electron Microscopy Sciences) in 1X

PBS for 15 min, rinsed three times in 1X PBS + 0.3% Triton X-100 (PBS-TX), and blocked for 1 hr at

4˚C in normal donkey serum (Jackson Immunoresearch). Primary antibodies used were chicken anti-

GFP (1:1000; Abcam), rabbit anti-DsRed (1:250, Clontech), mouse anti-1D4 anti-Fasciclin II (1:10;

Developmental Studies Hybridoma Bank), rabbit anti-5HT (1:1000; Sigma), rabbit anti dvGLUT

(1:10,000) (Daniels et al., 2004), rabbit anti-GABA (1:100; Sigma), mouse anti-ChAT (1:100; Devel-

opmental Studies Hybridoma Bank). Animals were incubated overnight in primary antibodies at 4˚C,
rinsed repeatedly in PBS-TX, and incubated overnight at 4˚C in species-specific, fluorophore-conju-

gated secondary antibodies (Jackson ImmunoResearch) at 1:200 in PBS-TX. Tissue was mounted on

poly-L-lysine coated coverslips, dehydrated in ethanol series, cleared in xylenes, and mounted in

DPX (Fluka).

Generation of clones
Single-cell FLP-out clones were generated by providing 1 hr heat shock at 38˚C in late embryonic

and early larval progeny from mating of stocks 1 and 4 (See Fly Stocks).

Behavioral analysis
For behavioral analysis, flies were reared at 25 ˚C and tested as wandering third instar larvae. For

each experiment, at least three trials, taken on separate days, were performed for each genotype.

Larvae were only tested once unless otherwise noted.
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Thermogenetic activation
For 412-Gal4 dTrpA1 experiments, third instar larvae were rinsed briefly in double distilled water

and placed on a 1% agarose gel heated to 31–34˚C by a hot plate (Dri-bath type 17600, Barnstead

Thermolyne). All other dTrpA1 experiments were performed on 1% agarose gels with 0.6% black ink

(Super Black India ink, Speedball) using a peltier device (CP-031, TE technology) and temperature

controller (TC-36–25-RS232, TE technology) to heat the gel to 32.5–33.5˚C. Animals displaying 360˚

rotations were classified as ‘rollers’. In 412-Gal4 VNC experiments, ‘Bend-roll’ was counted as coinci-

dent C-shaped bending and 360˚ rotation, ‘bend-crawl’ was counted when animals persistently bent

as they crawled and did not perform straight forward crawling, and ‘bend-only’ behavior, was

counted when animals remained in a curved posture without rolling or crawling. Trachea were used

as a reference for bending and rolling categorization. Animal behavior was recorded using a Leica

M50 camera along with Leica FireCam software and QuickTime screen capture for 60 s for 412-Gal4

activation, 29 s for 412-Gal4 VNC activation, and 30 s for all other activation experiments. Videos

were quantified offline with experimenter blind to condition.

Optogenetic activation
For optogenetic experiments, we tested animals in a photostimulation arena (de Vries and Clandi-

nin, 2013). Flies were raised on molasses food with or without 1 mM all-trans-retinal (ATR). Third

instar larvae were rinsed briefly in double distilled water and placed on a 100 � 15 mm petri dish

containing double distilled water blended with yeast particles to facilitate nocifensive behavior (S.

Mauthner, personal communication). Larvae were recorded using DALSA Falcon 4M30 four mega-

pixel digital camera and CamStudio screen capture software with 10 s blue light off-10 second blue

light on (23500 Lux). A dim red light was on for the entirety of the experiment to illuminate larvae

during lights off periods (300 Lux). Animals displaying 360˚ rolling were counted as responders. Vid-

eos were quantified offline.

Global activation assay
For the global activation assay, third instar R70F01

T
412 larvae were placed on a 1% agarose 0.6%

black ink gel (Super Black India ink, Speedball) heated to 40˚C by a peltier device (CP-031, TE tech-

nology) and temperature controller (TC-36–25-RS232, TE technology). Behaviors were recorded for

30 s using Leica M50 camera along with Leica FireCam and QuickTime screen capture. After experi-

ments, animals were placed on microscope slide with 70% glycerol and a coverslip, and assessed for

GFP expression under a fluorescence microscope. Behavior was quantified offline with experimenter

blinded to genotype. Duration of the first rolling event was quantified by using the trachea as a ref-

erence to determine the completion of a 360˚ roll (i.e. frame before trachea starts to disappear as

beginning of roll and frame where trachea is re-centered as completion of rolling event).

Local heat assay
Local heat assay was performed as previously described (Tracey et al., 2003) with slight modifica-

tions. Soldering iron (SKU25337, Sinometer) was used as a noxious thermal probe and the tempera-

ture was set to 51.6–55.5˚C by adjusting voltage using a variac (3PN1010B, Staco Energy). Digital

thermometer (51 II, Fluke) with thermocouple temperature sensor was used to measure the tempera-

ture of the thermal probe. Larvae were lightly touched with thermal probe at segments 4–6 for 5 s.

Animals were characterized as ‘responder’ if they performed 360˚ roll within 5 s, and ‘non-responder’

if they did not. Animal behavior was recorded using Leica FireCam and QuickTime screen capture.

Videos were quantified offline with experimenter blind to genotype.

Gentle touch assay
For the gentle touch assay, experiments were conducted as previously described (Kernan et al.,

1994). Third instar larvae were rinsed off in double distilled water, then left to acclimate on 1% agar

for 3 min. Animals were tested on 1% agar 100 � 15 mm petri dish and assigned a Kernan score for

each behavior 0: no response, 1: hesitate, 2: anterior withdraw or turn, 3: single reverse wave, 4:

multiple reverse waves. Experimenter was blind to genotypes during testing.
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Crawling speed assay
To assess crawling speed, larvae were rinsed in double distilled water and placed on a 1% agarose

gel and tested for crawling speed using the Multiworm tracker (Swierczek et al., 2011). Larvae were

tested three at a time at 25˚C.

Dose-response optogenetic experiments
For dose-response optogenetic experiments, animals were tested on the FIM (Frustrated total inter-

nal reflection based Imaging Method) table (Risse et al., 2013), Basler ACE four megapixel near

infrared sensitivity enhanced camera equipped with CMOSIS CMV4000 CMOS sensor. Camera was

equipped with LM16HC-SW lens (Kowa), and BN880-35.5 filter (Visionlighttech). IR diodes (875 nm,

Conrad) were used for FTIR imaging and images were acquired using Pylon camera software (Bas-

ler). Animals were placed on 0.8% agar surface ~2 mm thick (Molecular grade, Fisher Scientific) with

a ring of Green (525 nm) LED lights (WFLS-G30 � 3 WHT, SuperBright LEDs) around five inches in

diameter placed directly underneath the FIM table, with a standard barrel connector and a pulse-

width modulation circuit based LED dimmer (CPS-F2ST; LDK-8A, SuperBrightLEDs) for light intensity

control. Larvae were raised on molasses food with 1 mM all-transretinal (ATR). Third instar larvae

were rinsed briefly in double distilled water and tested ~3–5 animals at a time. Animals were

recorded for at least 1 s before light stimulation, and then for at least 10 s following lights ON. Trials

were recorded at different light intensities: Lowest (~45 lx), Low (~200 lx), Moderate (~850 lx) and

Highest (~1450 lx). Videos were collected at 10fps and quantified offline with experimenter blind to

the manipulation. Only 11 s of behavior were scored per trial (1 s pre-stimulus, 10 s lights ON).

Behaviors quantified: Crawling, segmental waves visible; Pausing, no movement straightened body;

Bending, animal curved or on its side, and Rolling, 360˚ turns using bright trachea as a reference.

Bending angles were quantified using the FIMTracker software (Risse et al., 2013)

Calcium imaging
DnB neurons
Calcium imaging was performed in a partially dissected larval preparation. Wandering third instar

larvae were immersed in ice-cold hemolymph-like saline 3.1 (HL3.1) (70 mM NaCl, 5 mM KCl, 1.5

mM CaCl2, 4 mM MgCl2, 10 mM NaHCO3, 5 mM Trehalose, 115 mM Sucrose, and 5 mM HEPES, pH

7.2) (Feng et al., 2004). The body wall of the larva was cut at segment A2 or A3 to expose the cen-

tral nervous system, leaving the posterior larval body and ventral nerves intact. Dissected larvae

were then transferred to an imaging chamber filled with HL3.1 equilibrated to room temperature

(23–25˚C). The CNS was covered with a strip of parafilm and gently pressed down onto a coverslip

for immobilization during imaging. DnB neurons in the ventral nerve cord were imaged using a Zeiss

LSM5 Live confocal microscope with a 20x/0.8 Plan-Apochromat objective equipped with a piezo

focus drive (Physik Intrumente). Three-dimensional time-lapse imaging was performed with X-Y

dimensions of 256 � 256 pixels, a slice thickness of 7 mm, 8–11 Z slices (covering 49 to 63 mm), a

scan speed of 31 msec per pixel, and 8 bit depth. The acquisition rate of Z stack images with this set-

ting was 4 to 5 Hz. During imaging, a thermal ramp was applied locally to hemisegments A5 to A7

of the dissected larvae using a custom-made thermal probe. The temperature of the thermal probe

was controlled by changing the voltage through a variac transformer (RSA-5E, Tokyo Rikosha). 15V

was used to heat the probe and no voltage was applied during cooling. A t-type thermocouple

probe wire (0.2 mm dia., Sansho) was placed inside of the thermal probe to monitor the temperature

of the probe. Temperature data measured by the thermocouple probe were acquired at 4 Hz

through a USB-TC01 digitizer (National Instruments) and recorded using the NI Signal Express soft-

ware (National Instruments). The acquired images and temperature data were analyzed using MAT-

LAB (Mathworks). The average of the lowest 10% fluorescent intensity was used as baseline F (F0) for

each region of interest, and percent fluorescent change from the baseline (DF/F0) was calculated for

each time point. Regions of interest (ROIs) were selected as circular areas with a diameter of 6 pixels

that contain the cell bodies of the DnB neurons in the maximum intensity projections of the time-

series images. Probe temperature for each image frame was estimated by a linear interpolation from

the raw probe temperature trace, due to differences in sampling rate and timing across images and

probe temperature.
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Goro neurons
For activation of presynaptic neurons (Down and Back) with CsChrimson and imaging in Goro neu-

rons, the central nervous system of wandering third instar larvae was dissected in cold physiological

saline, Baines solution (Baines et al., 2001) containing (in mM) 103 NaCl, 5 KCl, 5 HEPES, 26

NaHCO3, 1 NaH2PO4, 5 Trehalose, 6 Sucrose, 2 CaCl2 2H2O, 8 MgCl2 6H2O, and kept stable by

sticking them on poly-L-lysine (SIGMA, P1524) coated cover glass placed in small Sylgard (Dow

Corning) plates. 620 nm LED (Mightex Systems Inc.) was used for whole CNS CsChrimson activation

and 1040 nm laser using Phaser module (Intelligent Imaging Innovations, Inc.) for localized CsChrim-

son activation. We imaged the axon of Goro neurons. Image data were processed by ImageJ soft-

ware (NIH) and analyzed using custom code written in MATLAB (Mathworks). Specifically, regions of

interest (ROIs) were determined by averaging the 10 frames before stimulation and segmenting

these data by the function MEAN83 in ImageJ. The mean intensity of ROI was measured in ImageJ.

In all cases, changes in fluorescence were calculated relative to baseline fluorescence levels (F0) as

determined by averaging over a period of at least 3 s just before CsChrimson activation. DF/F0 val-

ues were calculated as DF/F0 = (Ft –F0) / F0, where Ft is calculated by subtracting the background

fluorescence from the fluorescence mean value of a ROI in a given frame.

Boundary curvature and kymograph analysis
Larval curvature was determined as previously described (Driscoll et al., 2011; Driscoll et al., 2012)

with modifications. Frames were extracted from 30 fps videos and thresholded. A size filter was

applied to remove artifacts and debris. Artifacts closely associated with the animal (such as light

specks or motion blurs) that would interfere with extraction of boundary curvature were manually

removed blind to treatment by painting over the artifact with the background color (black). The

boundary shape of the animal was parametrized with 300 boundary points. At each boundary point,

we calculated the curvature by fitting a circle to that point and two points that are 10 boundary

points away from it. Curvature Index (C.I.) was defined as the reciprocal of the radius of that circle so

that smaller circles (greater curvature) had a higher absolute C.I. value. If the midpoint of the line

segment joining these two flanking points is outside the larval outline, the C.I. was assigned to be

positive (concave curvature); otherwise it was assigned to be negative (convex curvature). For visuali-

zation, a color scale was generated with warm colors corresponding to positive C.I. (i.e. concave cur-

vature segment) and cool colors corresponding to negative C.I. (i.e. convex curvature segment).

Kymographs were generated by plotting curvature index (colored by magnitude) of 300 boundary

points across time. Alignment of the 300 points across time in kymographs was achieved by map-

ping points across frames to minimize the sum of the square distance of points between successive

frames. To maintain the relative head and tail positions in the kymographs, we manually corrected

for misalignment. Animals from R70F01
T
412-silenced and non-silenced groups were selected for

boundary curvature analysis if they fulfilled one of two criteria (1) completed rolling (360˚ turns), or

(2) ‘attempted rolling’ (i.e. exhibited lateral body turns that were <360˚; trachea was used as a refer-

ence to assess lateral turning). Classification was performed blind to genotype. An identical number

of animals were analyzed for each treatment, which for the non-silenced animals corresponded to

the first 24 animals tested. Custom MATLAB scripts were used for curvature analyses and generation

of kymographs.

Quantification of boundary curvature
Quantification was focused on boundary points with positive C.I. values, which reflects concave cur-

vature (i.e. mainly inside C-shaped bend). To further refine analyses, curvature indices (C.I.) taken at

boundary points along the body were included, with the exception of the head and tail (defined to

be within 25 points of the head and tail tip points) as their curvature reflected the animal’s shape at

the tips, and not the curvature of the animals’ body. Percent of boundary points at low curvature

(0 < C.I.<0.027) and high curvature (C.I. > 0.027) were compared between control and

R70F01
T
412-silenced animals. The C.I. cutoff for low curvature vs. high curvature was defined as the

median of the C.I. in the control group. Multivariate analysis of variance (MANOVA) was performed

with Bonferroni correction, for multiple testing, followed by post-hoc T-test to determine exact

p-value.
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EM reconstruction of DnB circuits
EM reconstruction was performed using CATMAID as previously described (Ohyama et al., 2015;

Schneider-Mizell et al., 2016). A09l (DnB) neurons in A1 were identified during circuit reconstruc-

tion downstream class IV sensory neurons (Ohyama et al., 2015), and were verified as 412-Gal4

labeled neurons based on morphology and cell body position. DnB annotated synapses then served

as starting points to reconstruct the pre- and post-synaptic connectome.

Statistical analysis
For categorical data analysis (i.e. responder vs. nonresponder), we utilized Fisher exact test or Chi

square test (if expected value=<5) followed by Bonferroni correction if multiple testing was used.

When comparing two groups of quantitative data (e.g. number of rolls), unpaired t-test was per-

formed if data showed a normal distribution (determined using D’Agostino and Pearson omnibus

normality test) and Mann-Whitney test if data distribution was non-normal.When comparing three or

more groups, data were analyzed using One-way ANOVA or Kruskal-Wallis test with Dunn’s correc-

tion for multiple testing, followed by post-hoc T-test to determine exact p-value.
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