5,220 research outputs found
Technical support for creating an artificial intelligence system for feature extraction and experimental design
Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied
Heterogeneous microbial community associated with Bursaphelenchus xylophilus
Pine wilt disease (PWD) is a complex disease integrating three major factors: the causal agent, the pinewood nematode Bursaphelenchus xylophilus; the insect-vector Monochamus spp.; and the host pine tree, Pinus sp. Since the early 80’s, the notion that another pathogenic agent involved, namely bacteria, may play a role in PWD has been gaining traction, however the role of bacteria in PWD is still unknown. The present work suggests the intriguing possibility that some B. xylophilus-associated bacteria may play a significant role in the development of this disease. This is inferred as a consequence of: (i) the phenotypic characterization, of a collection of 35 isolates of B. xylophilus-associated bacteria, in different tests broadly used to test plant pathogenic and plant growth promoting bacteria, and (ii) greenhouse experiments that infer pathogenicity of these bacteria in in maritime pine, Pinus pinaster. The results illustrate the presence of a heterogeneous microbial community associated with B. xylophilus and the traits exhibited by at least some of these bacteria appear to be related to PWD symptoms. The inoculation of four specific B. xylophilus-associated bacteria in P. pinaster seedlings resulted in the development of some PWD symptoms suggesting that these bacteria likely play an active role with B. xylophilus in PWD
Evidence for the involvement of ACC deaminase from Pseudomonas putida UW4 in the biocontrol of pine wilt disease caused by Bursaphelenchus xylophilus
Abstract Pine wilt disease, caused by the nematode
Bursaphelenchus xylophilus, is responsible for devastation
of pine forests worldwide. Until now, there are no
effective ways of dealing with this serious threat. The
use of 1-aminocyclopropane-1-carboxylate (ACC)
deaminase (encoded by the acdS gene)-producing plant
growth-promoting bacteria has been shown to be a
useful strategy to reduce the damage due to biotic and
abiotic stresses. Pinus pinaster seedlings inoculated
with the ACC deaminase-producing bacterium Pseudomonas
putida strain UW4 showed an increased root
and shoot development and reduction of B. xylophilus
induced symptoms. In contrast, a P. putida UW4 acdS
mutant was unable to promote pine seedling growth or
to decrease B. xylophilus induced symptoms. This is the
first report on the use of ACC deaminase-producing
bacteria as a potential biological control agent for a tree
disease, thus suggesting that the inoculation of pine
seedlings grown in a tree nursery might constitute a
novel strategy to obtain B. xylophilus resistant pine
trees
A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells
Real Time Turbulent Video Perfecting by Image Stabilization and Super-Resolution
Image and video quality in Long Range Observation Systems (LOROS) suffer from
atmospheric turbulence that causes small neighbourhoods in image frames to
chaotically move in different directions and substantially hampers visual
analysis of such image and video sequences. The paper presents a real-time
algorithm for perfecting turbulence degraded videos by means of stabilization
and resolution enhancement. The latter is achieved by exploiting the turbulent
motion. The algorithm involves generation of a reference frame and estimation,
for each incoming video frame, of a local image displacement map with respect
to the reference frame; segmentation of the displacement map into two classes:
stationary and moving objects and resolution enhancement of stationary objects,
while preserving real motion. Experiments with synthetic and real-life
sequences have shown that the enhanced videos, generated in real time, exhibit
substantially better resolution and complete stabilization for stationary
objects while retaining real motion.Comment: Submitted to The Seventh IASTED International Conference on
Visualization, Imaging, and Image Processing (VIIP 2007) August, 2007 Palma
de Mallorca, Spai
Evolutionary trajectories in rugged fitness landscapes
We consider the evolutionary trajectories traced out by an infinite
population undergoing mutation-selection dynamics in static, uncorrelated
random fitness landscapes. Starting from the population that consists of a
single genotype, the most populated genotype \textit{jumps} from a local
fitness maximum to another and eventually reaches the global maximum. We use a
strong selection limit, which reduces the dynamics beyond the first time step
to the competition between independent mutant subpopulations, to study the
dynamics of this model and of a simpler one-dimensional model which ignores the
geometry of the sequence space. We find that the fit genotypes that appear
along a trajectory are a subset of suitably defined fitness \textit{records},
and exploit several results from the record theory for non-identically
distributed random variables. The genotypes that contribute to the trajectory
are those records that are not \textit{bypassed} by superior records arising
further away from the initial population. Several conjectures concerning the
statistics of bypassing are extracted from numerical simulations. In
particular, for the one-dimensional model, we propose a simple relation between
the bypassing probability and the dynamic exponent which describes the scaling
of the typical evolution time with genome size. The latter can be determined
exactly in terms of the extremal properties of the fitness distribution.Comment: Figures in color; minor revisions in tex
The on-top pair-correlation density in the homogeneous electron liquid
The ladder theory, in which the Bethe-Goldstone equation for the effective
potential between two scattering particles plays a central role, is well known
for its satisfactory description of the short-range correlations in the
homogeneous electron liquid. By solving exactly the Bethe-Goldstone equation in
the limit of large transfer momentum between two scattering particles, we
obtain accurate results for the on-top pair-correlation density , in both
three dimensions and two dimensions. Furthermore, we prove, in general, the
ladder theory satisfies the cusp condition for the pair-correlation density
at zero distance .Comment: 8 pages, 4 figure
Beyond Prejudice as Simple Antipathy: Hostile and Benevolent Sexism Across Cultures
The authors argue that complementary hostile and benevolent componen:s of sexism exist ac ro.ss
cultures. Male dominance creates hostile sexism (HS). but men's dependence on women fosters
benevolent sexism (BS)-subjectively positive attitudes that put women on a pedestal but reinforce their
subordination. Research with 15,000 men and women in 19 nations showed that (a) HS and BS are
coherenl constructs th at correlate positively across nations, but (b) HS predicts the ascription of negative
and BS the ascription of positive traits to women, (c) relative to men, women are more likely to reject
HS than BS. especially when overall levels of sexism in a culture are high, and (d) national averages on
BS and HS predict gender inequal ity across nations. These results challenge prevailing notions of
prejudice as an antipathy in that BS (an affectionate, patronizing ideology) reflects inequality and is a
cross-culturally pervasive complement to HS
Sampling Plans for Control-Inspection Schemes Under Independent and Dependent Sampling Designs With Applications to Photovoltaics
The evaluation of produced items at the time of delivery is, in practice,
usually amended by at least one inspection at later time points. We extend the
methodology of acceptance sampling for variables for arbitrary unknown
distributions when additional sampling infor- mation is available to such
settings. Based on appropriate approximations of the operating characteristic,
we derive new acceptance sampling plans that control the overall operating
characteristic. The results cover the case of independent sampling as well as
the case of dependent sampling. In particular, we study a modified panel
sampling design and the case of spatial batch sampling. The latter is advisable
in photovoltaic field monitoring studies, since it allows to detect and analyze
local clusters of degraded or damaged modules. Some finite sample properties
are examined by a simulation study, focusing on the accuracy of estimation
- …
