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-- I. Introduction

Techniques for classifying objects into groups or classes go under many

different names including, most commonly, cluster analysis. Mathematically, the

general problem is to find a "best" mapping of objects into an index set

-- consisting of class identifiers. When an a priori grouping of objects exists,

the process of deriving the classification rules from samples of classified

objects is known as "discrimination". When such rules are applied to objects of

unknown class, the process is denoted "classification."

For this paper, our problem is to classify into groups a set of objects

that are each associated with a series of measurements (ratio, interval,

ordinal, or nominal levels of measurement). Each raeasurementproduces one

variable in a multidimensional variable space. Thus, objects may be represented

as vectors or points in this multidimensional space and the usual multivariate

statistical techniques may be used. In some applications each object also may

exist in geographical space; i.e., each object is associated with a location on

the earth's surface. Although an object's location in geographical space can be

represented by a pair of planar or spherical coordinates (and, possibly, by a

third coordinate representing height or elevation), problems exist in simply

considering location as another measurement. These will be discussed below.
T'--

-- A basic methodological philosophy in classification is to consider the

distances between objects in the multl-dimensional measurement space. It is
T--

expected that similar objects will be represented by points that lie near to one
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-- another in this space. In this sense, clustering can be considered the process

of defining regions of the measurement space that divide the points (and their

associated objects) into optimal classes. New points (and objects) can then be

classified by determining which region they lie in.

_ 2. Cluster Analysis

-- In cluster analysis the objective is to take a set of objects with unknown

classification and to group these objects into "natural" classes or clusters

(Hand, 1981). The selection of measurements to use in the cluster analysis is

of critical importance because the groupings that result are completely

determined by the choice of measurements. If these measurements are irrelevant

-- to the objective or application of the grouping (e.g., trying to identify groups

of locations with similar remote sensor characteristics), the clustering is

likely to produce irrelevant groupings.

Once the measurements have been selected, it may be desirable to reduce

-- their number to make computation feasible and/or to eliminate variables that

will not add significantly to the analysis. In order to do this a measure of

how closely the reduced set of measurements or dimensions corresponds to the

original set is needed along with an algorithm to find the subset of variables

that optimizes this measure. The most popular approach is the method of

-- principlecomponentswhich is basedon lineartransformationsof variablesand

the deletion of variables that account for very little of the total variance.

More recently, non-linear methods have been proposed and are based on a wide
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range of structural criteria (for example, using multidimensional scaling

techniques).

A wide variety of cluster analysis techniques exist; these can be

conveniently divided into two major approaches, hierarohlcal and optimization.

In a hierarchical analysis, the final groupings are formed by iteratively

grouping subolusters or by iteratively splitting parent clusters (i.e.,

-- agglomerative or divisive approaches). Optimizationtechniquesattemptto find

the clusters that result in the maximizationor minimizationof a clustering

measurement criterion. A major differencebetweenthe two approachesis that in

optimization objects can be switched between clustersif that resultsin an

improvementin the value of the optimizationcriteria.

An aspect of cluster analysis that can have a significantinput on the

results is the choice of the multidimensionaldistance (i.e.,similarityor

nearness) measures to use. Many distance measuresexist in additionto the

usual Euclideandistance,some of which are generalizedmetricsthat includethe

_ Euclidean measure as a special case (e.g., Minkowski metrics,Mahalanobis

metrics). Table I provides a listing of selecteddistancemeasures used in

-- clustering(Cormack,1971).

Major categories of distance measures include those that satisfy the metric

properties and those based on the correlation coefficient. For non-interval

variables, other distance measures have been developed. For binary variables,

-- similarity measuresbased on the 2 x 2 agreement/disagreementtable are commonly

3
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used, such as the simplematchingcoefficient(measure11 in Table I). Other

measures-based on this table include the Jaceardcoefficient(measure10 in

-- Table I) and the Dice coefficient (measure 9 in Table I). Note that the

• principles behind the measures for binary variablescan easily be extendedto

the case of nominal variables with n categories. Ordinalvariablescan be

treated as nominal by ignoringthe order information,or numericalranks could

be assigned to the orders and the ordinalvariabletreatedas interval. Also,

rank-order correlation coefficients could be used in the sar,e way as interval

correlation'coefficientsto define distancemeasures.

Another issue related to clusteranalysisis variable standardizationand

weighting. Different sets of weights applied to the variablescan lead to

completely different clusteranalysisresults (Hand, 1981). However,this fact

can be used advantageously as a means to add known or exogenoussimilarityor

importanceinformationto the analysis.

Hierarchical clusteranalysisprocedures,particularlyof the agglomerative

type, are well-known. At each step in the procedure,two (or more) existing

sub-clusters are merged. In the final step, all objects are groupedinto a

-- single cluster. The clustering solution desired may then either be the one

produced for the specified number of clusters desired, or when an a priori

number of clusters is not known, an optimal clustering level can be selected

using various measures of information loss or cluster compactness to select a

"break point". One issue in agglomerative cluster analysis is the measurement

of inter-cluster distances which are needed to decide, at each step, which



TABLE l:,' SELECTED DISTANCE MEASURES

USED IN CLUSTERING

(from Haggett et al, 1977)

1. Euclidcandistanc__ w,(x,.-x/.) 2

Unstandardized:w= I
Standardizedby standard deviation,s:w, = I/s_. Denote by d 2

Slandardiz_d by range: w, = I/max(xl,.-x/,.):

N

2. City-bh_ckmetric _ w,[x,,-xj,{
w-I

Mean character difference: w, = I/N

- ]'3. Minkowskimctrics x_,- xl,.pt_

B-I

4. Angular separation i

X X
u tw-

(x,,-_,)(xj,.-._j)
w-I

5. Correlationp. = i

(xl,-£_): (xs,-,_l)1
• v I e'l

2k. - _=
6. Profilesimilarityindex:_,_-_-'7"_,2' where2k.+A

_ p(,_,2< L) = 0.5

7. Coemcien!or nearness:{V/_ - A)/{x/_ + A}

8. "Canberra'metrlc;_. IXlo-XS,l/(xt,+xl,)

2a

2a+b+c
a

|0._
a+b+c

a+d
I I. Simplematching:- a+b.c+d

*Inthistable,x€is thevalueofthe variateX forobservationuniti, whilev - !,2..... N indexes
th_numberofdimensionsinthespace.Thelastthreeindicesrelateto binarycharacters,whereo,b,

albab

c,andd referto thenumberof characterspos_ ornotposscs_d ina 2 x 2 table€-'_"Source:

Cormack,1971,p. 325.
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-- sub-clusters to combine. Among the approaches possible are nearest-neighbor,

furthest-neighbor, centroids, medians, group averages, or sum of squared

deviations distance measures. This latter measure is used in Ward's (1963)

popular method.

-- Optimization approaches involve the definitionof the optimization

algorithm. The most popularoptimizationcriteriaare those based on the matrix

identity (Anderberg, 1973):

T: W+B

T is the scatter matrix which describes the overalldeviationof the

-- observations around the grand mean, W is the within-class scatter (i.e.,

deviation of observations around the cluster means), and B is the weighted sum

describing the scatter of the cluster means about the grand mean. Given this

identity, the goal of the clustering can be to maximize B or minimize W.

However, in order to make the optimization meaningful, it is necessary to

summarize the multivariate matrix structure.

This summerization can be performed in several ways. For example, the

trace W can be used. This turns out to be identical to the sum of squared

deviations from the observations to the cluster means (as in Ward's hierarchical

-- method). However, this method is sensitive to outliers and may not result in

compact clusters. In addition, trace W is not invariant to sealing or weighting

(this may be an advantage if weights are to be used). Other approaches include

6



"- using the determinant of W, using the eigenvalues of the matrix W ' B (which are

equal to the ratio of between-cluster scatter to within-cluster scatter), using

the trace of matrix W t B or the trace of matrix T ' W.

After an optimization criterion (and summarization method) has been chosen,

the optimum clustering must be determined. The most obvious way to do this is

to calculate the criterion value for every possible arrangement of clusters and

to select the one with the best score. Unfortunately, the number of possible

arrangements quickly becomes prohibitively large. For example, there are 1030

possible allocations of 100 objects into 2 classes. Therefore, either the

search must be limited to some "likely" subset of arrangements or a more

efficient method for complete search must be used.

One approach to limiting the scope of the problem is through the use of

evolutionary search procedures. These begin with an initial arbitrary

clustering and determine whether or not to switch observations to another group.

If this switch will produce an improved score on the optimization criterion, it

is implemented. This approach has the potential to result in a solution which

is a local, non-global optimum (MacQueen, 1967). Alternatively, a steepest

descent algorithm can be used following appropriate transformations of the

optimization problem (Gordon and Henderson, 1977).

-- Branch and bound techniques have also been used to determine optimal

clusters (Koontz et al, 1975). This method permits the consideration of every

possible clustering arrangement without requiring the explicit evaluation of the
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-- optimization score for each clustering (Hand, 1981). Other mathematical

programming techniques have been suggested for cluster analysis, usually applied

to special case problems. Rao (1971) has outlined the use of linear and

non-linear integer programming techniques for several constrained clustering

analyses.

3. Clusterin5 with Spatial Constraints

When the objects to be classified are associated with geographic location,

the application may require that spatial properties be explicitly considered.

_ It is, of course, possible to modify clustering procedures so that both nearness

in taxonomic space and geographic space are taken into account (Haggett et al,

-- 1977). The simplest approach to implementing this is by the inclusion of

spatial contiguity constraints into a standard clustering algorithm.

For some applications, the contiguity constraint is applied absolutely,

i.e., clusters can only consist of neighboring objects or areal units. In this

case, the distance function used to place an object in the multidimensional

space can be defined to be an arbitrarily large number if the two objects are

not neighbors; if they are neighbors, distances can be calculated in the variety

of ways listed in Table I.

The concept of variable weighting was introduced in Section 2 above. A

second way to integrate spatial information into a clustering analysis is to

apply weights to object pairs; these weights are related to the objects'
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_- relative locations. For example, weights may be based on distances between

objects, on the length of common boundary, or on the presence/absence of

transportation/communicatlon facilities joining the two locations.

Another approach to considering spatial contiguity in clustering relies on

-- constraints applied during the cluster-building process. For example, in

determining which object or sub-cluster to add to another in an agglomerative

hierarchical clustering algorithm, the search can be restricted to contiguous

sub-clusters. Thus, at each step, the goal is to find the sub-cluster such

that, when merged with an adjacent sub-cluster, the overall clustering

_ solution is improved to the greatest extent possible.

4. Measures of Spatial Patterning

The discussion of Section 3 describes how information on geographic

_ location can be included in standard cluster analysis techniques. In this

approach, geographic location (or contiguity) can be considered a characteristic

of an object to be classified in much the same way as any other measured

attribute of that object. In some clustering application, it may be beneficial

to consider other, more complex indicators of the spatial characteristics of the

areal units (i.e., objects) and their associated attributes. This is especially

relevant when the object is to group the variables rather than the objects

-- themselves. In this application we are given scores on a set of variables over

a set of areal units and the problem is to determine those variables most alike

in terms of their spatial distribution or patterning.

9



Standard correlationproceduresare an obviouschoicefor evaluatingthe

similarity of variables across the observation units. However, this is

essentially an aspatial approach in that only areal unit to areal unit

comparisons are made. To illustratethe limitationsof this approach,consider

-- two variables measured over a gridded sample area such that the value of

variables A in a given cell is a function of the value of variable B in a

neighboring cell. If the spatial distribution of the values of variable B is

random, there will be zero correlation between variables A and B under this

scenario. Clearly, we may desire a measure of similarity that could detect such

_ "spill-over" or neighborhood effects.

One approach to doing this has been developed by analogy with time series

analysis. A spatial cross-correlation coefficient can be defined as the average

correlation between areal units' values on variable A and neighboring areal

units' values of variable B. A coefficient with score not significantly

different than zero is interpreted to mean that there are no significant

"spill-over" effects between variables A and B. The averaging process causes

significant loss of potentially useful information concerning directionality of

effects (if any do exist). Therefore, it is possible to calculate separate

spatial corss-correlation coefficients for neighbors to the east, west, north,

and south of the index areal unit.

A single spatial cross-correlation coefficient includes only

nearest-neighbor or contiguous units effects. The concept can be generalized to
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-- include spatial "lags" that consider the possibility of effects of second-order

neighbors (i.e., units with a single intervening unit between them),

third-order, etc. Thus, in its most general form, the elements of a spatial

cross-correlation matrix are the spatial cross-correlation coefficients for

neighbors i units apart in the x direction and j units apart in the y direction.

For a single variable, spatial autocorrelation (coefficient and/or

function) provides a descriptive measure of the overall spatial patterning of

the variable. Autocorrelation functions could be calculated for each of the

variables involved in a clustering problem. Comparison of these functions may

_ assist in the elimination of variables that do not significantly differ from a

remaining variable in terms of spatial pattern. In addition, clusters or groups

-- may be created so as to maximize the degree of spatial autocorrelation in a

particular pattern. An alternative approach to the same goal involves the use

of trend surface modeling. In this technique, polynomial functions of x and y

coordinates are used to decompose a univariate spatial pattern into linear,

quadratic, cubic, etc. terms. The coefficients calculated for each of these

terms can then be used to compare and classify variables according to their

spatial patterns.

4.1 Spatial autocorrelation (Cliff & Ord, 1981)

Consider a study area which has been exhaustivelypartitionedinton

nonoverlapping subareas. Suppose that a random variable, X, has been measured

in each of the subareas, and that the value of X in the typical subarea, i, is
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xi . X could describe either (I) a single population from which repeated

drawings are made to give the Xi; or (2) n separate populations, one for each

eounty; or (3) a partition of a finite population among the n counties. It is

important to note that the choice of population model does not affect the

derivation of the measures of spatial autocorrelation, nor the method of

analysis. However it does affect the inferences that can be made•

A basic property of spatially located data is that the set of values, {xi} ,

are likely to be related over space. If the {xi} display interdependence over

space, we say that the data are spatially autocorrelated• The following formal

definition may be made: If, for every pair of counties i and j in the study

area the drawings which yield xi and xi are uncorrelated, then we say that there

is no spatial autocorrelation in the county system on X.

One model of the spatial interpendence among the {xi} is the scheme

Xi = P_Wij X. +_ , i = 1,2,...,n. (4.1)3
j i

Here, the {_i } are independent and identically distributed variates with co,non

variance, _2
• The set of weights, {wij} , are any set of constants that specify

which j subareas in the study area have variate values directly spatially

related with Xi. The constant, p, is a measure of the overall level of spatial

autocorrelation among the {XiXj} pairs of which wij> O. For example, we might

put wij = I (unscaled) if j is physically continuous to i, and wij = 0

otherwise. More general sets of weights may, however, be constructed. For

12



example,

wij = (c + dij)-a (4.2)

where dij is the distance between points or areas, i and j, and a is a 'friction

-- of distance' parameter as used in many gravity and interaction models, and c is

a constant (c > 0). Finally, when p > 0 in model (4.1), we say that there is

positive spatial autocorrelation among the {Xi} whereas p < 0 implies negative

spatial autocorrelation. The former ease is characterized by similar {xi}

values in areas with nonzero {wij } values, and the latter by very different

_ relationships. If p : 0 in model (4.1), there is said to be no spatial

autocorrelation in the study area on X, and the variate values are randomly

mixed.

4.2 Basic spatial autocorrelation measures

The measures of spatial autocorrelation which have been proposed in the

-- literature are discussed according to the kind of data (nominal, ordinal, or

interval scaled) to which they may be applied. This also coincides with the

historical order of development of the measures.

Measures for nominal data

The simplest nominal scale is a binary classification. In each of the n

counties we note whether a given event has or has not occurred. If it has, the

13



-- county is color coded black (B), and if it has not, the county is color coded

white (W). If two counties have a boundary of positive nonzero length in

common, they are said to be linked by a join. A join may link two B counties,

two W counties, or a B and a W county. These joins are called BB, WW, and BW

joins respectively. To determine whether events in neighbouring counties are

spatially autocorrelated or not, we count the numbers of BB, BW, and WW joins

which occur in the county system, and compare these numbers with the expected

numbers of BB, BW, and WW joins under the null hypothesis, HO, of no spatial

autocorrelation among the counties. Intuitively it can be appreciated that

"many" of BB joins, compared with the expected number under HO, implies

clustering of the B counties in the plane, whereas a "many" BW joins implies an

alternating pattern of B and W counties as, for example, along the rows and

columns of a chessboard.

i

The usual method employed to determine whether BB, BW, and WW depart

significantly from random expectation is to use the fact that these join-count

statistics are asymptotically normally distributed and to assume that these

results hold approximately for moderate sized lattices. The first two moments

of the coefficients are then used to specify the location (_) and scale (_2)

parameters of the normal distribution. The early work on these measures was

carried out for rectangular lattices. The moments of the join counts were first

obtained by Moran (1948).

Quite commonly the nominal scale will have classes (k > 2) rather than the

simple binary classification discussed above. Each class may then be assigned

14



-- one of k distinct colors, and each country is called after the color of the

class into which if falls. Conventionally, the analysis then proceeds by

counting the number of joins between counties of (I) the same color, (2) two

different colors, and (3) all counties of different colors.

Measures for ordinal and interval data

If X is ordinal scaled (ranked) or interval scaled, we could group the

range of X into k classes, such as quartiles or deciles, and use the color

lattice tests described above; in this case, a loss of information occurs. We

_ now define two further coefficients which assess the degree of spatial

autocorrelation between the {xi} in joined counties, where xi is either the rank

of the ith county (ordinal data) or the value of X in the ith county (interval

data). Individual county values are therefore retained and the loss of

information which occurs if the join-count statistics are employed is avoided.

The first coefficient was propbsed by Moran (1950) and is denoted I. The

second coefficient has been suggested by Geary (1954) and is denoted c. Both I

and c are analagous to the classic form of any autocorrelation coefficient:

the numerator term in each is a measure of covariance among the {xi} and the

denominator term is a measure of variance. In terms of temporal

autocorrelation, note that I reduces in one dimension to the familiar serial

correlation coefficient; c corresponds in form to the Durbin and Watson d

statistic (Durbin and Watson, 1971) used to search for temporal autocorrelation

in regression residuals, and to the yon Neumann ratio (yon Neumann, 1941).

15



Both I and c have been shown to be asymptotically normally distributed as n

increases. As with the join-count statistics, this result is assumed to hold

approximately for lattices of moderate size, and I and c are tested for

significance as standard normal deviates. The moments of I and c may be

evaluated under either of two assumptions: normality (here we assume that the

{xi } are the results of n independent drawings from a normal population) or

randomisation. Under randomisation, whatever the underlying distribution of the

population(s), we consider the observed value of I or c relative to the set of

all possible values which I or c could take on if the {x i} were repeatedly

randomly permuted around the county system. There are n! such values.

Choice of test statistic

When the researcher wishes to examine a data set for spatial

autocorrelation, he will have to decide which of the coefficients defined above

to use as his test statistic. The following guidelines are intended to help

make that choice (Cliff and Ord, 1981).

(I) With binary (0, I) data, the join-count statistics may be used.

Alternatively, I or c could be employed by putting, say, x i = I if an event has

occurred in the ith county and x. = 0 otherwise. However, with binary data, II

and c reduce, apart from constants, almost exactly to the BW statistic. Thus

there is little point with binary data in evaluating I or c rather than the

join-count statistics. If the join counts are used, the researcher has the

choice between the free and nonfree sampling models. Strictly, free sampling
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"- choice between the free and nonfree sampling models. Strictly, free sampling

may only be used if p is known a priori (exogenously). If p is estimated from

the data by ni/n , then only estimates of the moments are available. It is not

known whether this would induce a serious inferential error, but in these

circumstances the nonfree model may be more appropriate.

(2) With ranked or interval scaled data, I and c are preferred to the color

lattice approach. In order to use the color lattice approach with these data,

the {xi } must be grouped into classes, which results in loss of information. I

and c preserve the individual x values and so avoid this problem. Results given

in Cliff and Ord (1969, page 45) suggest that the variance of I is less affected

by the distribution of the sample data than is the differences-squared form used

in Geary's c. This is because the b2 term in the variance of the Geary

statistic has a coefficient of order n-I whereas for the Moran statistic the

coefficient of the b2 term is of order n-2 .

Limitations of measures

The join-count statistics, I, and c have two important limitations. First,

they suffer from what Dacey (1965, page 28) has called the problem of

'topological invariance'. That is, once the connection matrix has been

specified, the size and shape of counties in the system, and the relative

strength of links between counties (road and rail links, for example) are

completely ignored. The measures are, therefore, invariant under certain

transformations of the underlying county structure.

17



--

TO overcome this difficulty, Dacey (1965) suggested a measure of spatial

autocorrelation where the weights are a function of county area and length of

common boundary. Unfortunately it is not possible to express the moments of
p-.

this measure in a usuable form, and so no test of significance is readily

available.

The second limitation is one of usage. As defined, joins exist solely

between physically contiguous counties. With connectivity thus specified, the

measures search for spatial autocorrelation only between counties which are

first nearest neighbours. Thus correlogram analysis, to determine how the

autocorrelation function decays over space, was not attempted with these

-- measures. There is nothing in the structure of the tests which prevents this

kind of analysis. For example, we could define 'joins' to exist between

counties which are second, rather than first, nearest neighbours. Two counties,

i and k, might be called second nearest neighbours if they have no common

boundary of positive nonzero length, but there exits a county j such that i and

j are contiguous, and j and k are contiguous. Generalisation of the concept of

a join to second and higher order neighbours in this fashion is easily performed

using graph theoretic methods (see Haggett et al, 1977, pages 319-320). Even

if this were done, however, all joins would still be given equal weight; and in

some studies we might wish to give strong links between counties which are not

contiguous, and weak links between contiguous counties.

18



4.3 The weighted coefficients

Instead of using binary weights to formallse the concept of a join, we can

define a generalized weighting matrix W, W = {wi]} , where we denote the effect

of county j on county i by the weight wi]. Weighted versions of the join-count

statistics, Moran's I, and Geary's c statistic can be generalized from the

original versions. The use of a generalised weighting matrix W, as opposed to a

binary connection matrix, allows the investigator to choose a set of weights

which are deemed appropriate from prior considerations. This allows great

flexibility in defining the structure of the areal units and their

relationships, and permits items such as natural barriers and county size to be

taken into account. Further, if different hypotheses are proposed about the

degree of contact between neighbouring areas, alternative sets of weights might

be used to investigate these hypotheses. It is important to stress that care

must be used in the choice of weights if spurious correlations are to be

avoided. The factors which are most important will depend upon the study in

hand. For example, the amount of interaction between any two counties may

-- depend upon the distance between their geographical or demographic centers, the

length of common boundary between the counties, and so on.

When generalized weights are employed, the join-count, I, and c statistics

are still asymptotically normally distributed as n increases. An approximate

test of significance is therefore provided, as with binary weights, by

evaluating the coefficients as standard normal deviates. The values of the

generalized or weighted moments for each of the statistics described are given

19



in Cliff & Ord (1981).

4.4 Interpretation of results

To interpret spatial autocorrelation coefficients generally, assume that I

(or some other statistic) has been evaluated at several levels of spatial

separation, such as for first, second, third,.., order neighbouring cells. That

is, we construct a spatial correlogram. Sokal (1979) provides the following

summary of possibilities in the context of population densities, and it is

possible to construct similar schemes for other spatial processes.

Order of autocorrelation (spatial la_)
low high

(I) dispersal from (I) symmetrical surfaces

few sources (2) patchy arrangement

positive (2) large favourable

patches

Sign of (3) gradient (trend)

autocorrelation (I) heterogeneous (I) gradient (trend)
negative study area

(2) small patches

In talking of patches (i.e., spatial clusters), we must consider the

relative magnitudes of distances between individuals in the same patch or,

alternatively, patch diameter and the magnitude (diameter) of the cell observed.

Thus, when patch diameter is greater than cell diameter, we can expect positive ,

low-order correlations, but when cell diameter exceeds patch diameter, we may

get negative low-order correlations and positive higher-order correlations,

depending upon the degree of regularity in the occurrence of the patches.
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4.5 Spatial correlograms

Although the interaction between sites may be strongest between immediate

nelghbours, often the strength of interaction will vary in a complex way with

distance. To detect such variations in the spatial pattern, we define a spatial

correlogram by analogy with the correlogram used in time-series analysis

(Kendall, 1976, page 70).

X[, and let theConsider a system of n cells with random variables ..., Xn

cells i and j be gth-order neighbours (or g spatial steps apart). Various

definitions of neighbourliness are possible. Thus, two sites i and j may be g

-- steps apart in either of the following cases.

(a) If the shortest path from i to j on the graph connecting adjacent sites has

g edges; that is, the path passes through (g-l) intervening sites (g _ D, where

D is the diameter of the graph).

(b) If the distance, dij , between sites i and j falls in the gth distance

-- class.

Clearly the method of graph construction and the choice of distance

function depend upon the investigation, so that the definition is very broad.

The shortest paths for each pair of sites, as described in (a), may be evaluated

-- using the matrix powering algorithm described in Haggett et al (1977, pages
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_ 319-320). If the variates refer to areas rather than to point locations, we may

still construct graphs based upon common edges (and, possibly, vertices), or

-- measure distances from convenient reference points such as the area centroids.

5. Two-Dimensional Spectral Analysis

By analogy to tlme-series analysis, a spatial correlogram in the distance

-- domain has a corresponding spatial periodogram in the frequency domain. A

double (two-dimensional) Fourier series is fitted to the values of a variate

that have been collected at regular intervals on a cartesian coordinate system.

The Fourier surface obtained can be viewed as analogous to a polynomial trend

surface except that the surface is modeled with harmonic terms (i.e., sines and

-- cosines) instead of polynomials.

Using a Fast Fourier Transform (FFT), a spatial spectral density estimate

is computed. This results in an array of values at spatial frequencies in both

the North-South and East-West directions. The interpretation of the Spectral

_ surface is described in Rayner (1971) and Ripley (1981). Orientation is a

crucial feature in the analysis; the spectral surface describes the variability

-- in the pattern of variate values in different directions across a map. It is

also possible to consider variance explained irrespective of orientation or

direction. This can be done by averaging the spectral density estimates around

_ semi-circles of constant frequency. A high value in this averaged spectrum

indicates spatial periodicities at particular scales or distance intervals.
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As with spatial autocorrelation and spatial correlogram techniques, spatial

spectral density estimates can be used to describe the spatial patterning or

interdependency of a geographically-distributed variable. Groupings of

variables on the basis of similar measures can then be undertaken.

Alternatively, clustering of areal units or cells can be carried out to maximize

measures of spatial autocorrelation or spectral density.
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