48,871 research outputs found
Synthesis and Characterization of Coated Gold Nanoparticles with Embedded SERS Tags
Gold nanoparticles were prepared with the potential to operate as drug delivery vehicles. Surface-enhanced Raman spectroscopy (SERS) is of particular importance as an optical bioimaging technique due to its ability to allow deep and high-resolution volumetric imaging of biological tissues. Characterization of the gold nanoparticles with para-mercaptobenzoic acid (pMBA), a SERS active molecule, silver, and a phospholipid bilayer was done using Raman and UV-vis spectroscopy and particle size analysis. Our results indicate successful coating of the gold nanoparticles and show consistent pMBA Raman spectroscopy peaks that will allow for the nanoparticle use in-vivo to be monitored
Computer program for predicting symmetric jet mixing of compressible flow in jets
Finite-difference computer program has been developed for treating mixing of two parallel and compressible air streams; one of them may be supersonic. This development is restricted to symmetric jet mixing in which high-speed jet is located on axis of channel and no provision is made for blowing or suction along channel walls
Design of wideband vibration-based electromagnetic generator by means of dual-resonator
This paper describes the design of a wideband electromagnetic energy harvester that utilizes a novel dual-resonator method to improve the operational frequency range of the vibration-based generator. The device consists of two separate resonator systems (coil and magnet), which each comply with their respective resonance frequencies. This is because both resonators are designed in such a way that both magnet and coil components will oscillate at an additive phase angle, and hence create greater relative motion between the two dominating resonance frequencies, which realizes the wideband generator. Each resonator system consists of a distinctive cantilever beam, one attached with four magnets and steel keepers, the other attached with a copper coil and stainless steel holder as the free end mass. Both cantilevers are clamped and fitted to a common base that is subjected to a vibration source. Basic analytical models are derived and a numerical model is implemented in MATLAB-Simulink. Electromagnetic, structural modal and static mechanical analysis for the design of the prototype are completed using ANSYS finite element tools. For a 0.8 m s−2 acceleration, the open-loop voltage obtained from the experiment shows a good correlation with those from the simulation. Peak induced voltage is measured to be 259.5Vrms as compared to 240.9Vrms from the simulator at 21.3 Hz, which implies an error range of 7.7%. The results also indicate that there is a maximum of 58.22% improvement in the induced voltage within the intermediate region which occurs at the intersection point between the output response plots of two single resonator generators
Unstable inverse heat transfer problems in microelectronics
Inverse heat transfer problems are very important for the thermal testability of integrated circuits. Temperature sensors integrated on the same chip measure in real time the power dissipation in one or more critical heat sources of the circuit in order to prevent overheating. It will be demonstrated that these kinds of problems can give rise to mathematical unstabilities or the ill conditioning of the inverse problem. This statement will be proved with the help of several particular cases
Proportional hazards models with continuous marks
For time-to-event data with finitely many competing risks, the proportional
hazards model has been a popular tool for relating the cause-specific outcomes
to covariates [Prentice et al. Biometrics 34 (1978) 541--554]. This article
studies an extension of this approach to allow a continuum of competing risks,
in which the cause of failure is replaced by a continuous mark only observed at
the failure time. We develop inference for the proportional hazards model in
which the regression parameters depend nonparametrically on the mark and the
baseline hazard depends nonparametrically on both time and mark. This work is
motivated by the need to assess HIV vaccine efficacy, while taking into account
the genetic divergence of infecting HIV viruses in trial participants from the
HIV strain that is contained in the vaccine, and adjusting for covariate
effects. Mark-specific vaccine efficacy is expressed in terms of one of the
regression functions in the mark-specific proportional hazards model. The new
approach is evaluated in simulations and applied to the first HIV vaccine
efficacy trial.Comment: Published in at http://dx.doi.org/10.1214/07-AOS554 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Large Chern Number Quantum Anomalous Hall Effect In Thin-film Topological Crystalline Insulators
Quantum anomalous Hall (QAH) insulators are two-dimensional (2D) insulating
states exhibiting properties similar to those of quantum Hall states but
without external magnetic field. They have quantized Hall conductance
, where integer is called the Chern number, and represents
the number of gapless edge modes. Recent experiments demonstrated that chromium
doped thin-film (Bi,Sb)Te is a QAH insulator with Chern number
. Here we theoretically predict that thin-film topological crystalline
insulators (TCI) can host various QAH phases, when doped by ferromagnetically
ordered dopants. Any Chern number between can, in principle, be reached
as a result of the interplay between (a) the induced Zeeman field, depending on
the magnetic doping concentration, (b) the structural distortion, either
intrinsic or induced by a piezoelectric material through proximity effect and
(c) the thickness of the thin film. The tunable Chern numbers found in TCI
possess significant potential for ultra-low power information processing
applications.Comment: References update
- …
