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Inverse heat transfer problems are very important for the thermal testability of integrated circuits. Temper-
ature sensors integrated on the same chip measure in real time the power dissipation in one or more critical heat
sources of the circuit in order to prevent overheating. It will be demonstrated that these kinds of problems can
give rise to mathematical unstabilities or the ill conditioning of the inverse problem. This statement will be proved
with the help of several particular cases.
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1. Introduction

Thermal problems in electronics have gained a lot of
attention in recent years [1]. The main reason is that
both the power and the power density increased consid-
erably. In order to guarantee a su�cient lifetime, the
maximum temperature should be kept below a certain
limit [2]. But even when the maximum temperature
is acceptable, the temperature distribution on a silicon
chip can cause malfunctioning of the circuit. Taking into
account the temperature dependence of semiconductor
characteristics, the behaviour of a circuit or a component
will also change due to the temperature distribution in
the silicon [3, 4].

Usually, the solution of thermal problems involves the
determination of the temperature distribution starting
from the known power dissipations in the individual com-
ponents. In this contribution the inverse thermal prob-
lem will be considered: determine the power density
starting from temperature measurements on the chip.
Numerically, these kinds of problems are known as �in-
verse� problems and are often ill conditioned, i.e. small
errors of the temperature measurements cause large er-
rors on the calculated powers.

The inverse heat transfer problem in electronics and
microelectronics has been the topic of several papers
[5�9]. Most of these papers deal with the numerical prob-
lem associated with the ill conditioning of the system ma-
trix [10]. An overview of numerical techniques to invert
ill conditioned matrices can be found in [11].

Inverse thermal problems in microelectronics become
more and more important. Along the boundary of an in-
tegrated circuit, one can integrate temperature sensors,
so that the power dissipation can be monitored. If nec-
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essary, a circuit interrupt or a decrease of the clock fre-
quency can be foreseen in order to prevent excessive heat-
ing. This approach is called design for testability, i.e. the
design is made in such a way that the circuit can also
be tested during normal operation [12]. Not only the
original circuit but also a temperature sensing circuit is
integrated on the same chip. These temperature sensors
cannot be put on the same place as the power sources.
It will be demonstrated that the �nite distance between
sensors and sources or more generally the layout is re-
sponsible for the ill conditioned behaviour of the inverse
problem.
In this contribution we will limit ourselves to a few

cases: (1) two heat sources and two sensors, (2) two heat
sources and three sensors, (3) three heat sources and �ve
sensors and (4) two heat sources and 32 sensors along
the chip boundary. At the end an exact mathematical
analysis will be provided for the simplest case in order to
explain the unexpected results found with the numerical
simulations.

2. Model for the temperature distribution

We assume that the integrated circuit can be (ther-
mally) approximated by a half in�nite space with ther-
mal conductivity k. In the vicinity of a heat source, the
heat is only transported by conduction. The tempera-
ture T in a sensing point is then given by [13]:

T =
P

2πkr
(1)

where P is the dissipated power and r the distance be-
tween the sensing point and the heat source.
If several heat sources are involved, superposition can

be used

T =
∑
i

Pi

2πkri
. (2)

ri denotes the distance between the sensing point and the
i-th heat source Pi.

(TEMP--7986)
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One may argue that the thermal model as expressed
by (2) is a very simpli�ed one. The model does not take
into account the in�uence of the package, the cooling �ns,
the convective cooling,. . . It must be remarked here that
our model only needs to take into account the spatial
temperature variations on the chip, and not the average
heating. The package, cooling �n and convection will
just yield an average temperature rise of the whole chip.
For a more realistic temperature distribution, this aver-
age temperature has to be superposed to the value given
by (2). In this paper we are only interested in the spatial
temperature variations on the chip surface, for which (2)
is a good model also used by other authors [14].
The expressions (1) and (2) implicitly assume that ev-

ery heat source is a point shaped one. In practice it
means that (1) or (2) can only be used at a certain dis-
tance r from the heat source. It was found that the ap-
proximations (1) and (2) are valid for distances less than
or comparable to the thickness of the silicon substrate.
For very thin substrates (25 µm) the present model is not
suitable.

3. Two heat sources

Assume two power sources P1 and P2 located on the
x-axis (Fig. 1). The �rst sensing element S1 is placed

Fig. 1. Two heat sources P1 and P2 and two sensors
S1 and S2: the circle of Appolonius.

in the point (x′, y′). The question now is in which point
(x, y) the second sensor S2 should not be placed in order
to guarantee the solution of the inverse problem, i.e. the
determination of P1 and P2 from the measured temper-
atures T1 and T2 in S1 and S2. The temperatures are
given by

T =

(
T1
T2

)
=

1

2πk

 1√
(x−a)2+y2

1√
(x+a)2+y2

1√
(x′−a)2+y′2

1√
(x′+a)2+y′2


×

(
P1

P2

)
= A

(
P1

P2

)
= AP . (3)

We are only interested to investigate the existence or the
uniqueness of the solution of the inverse problem. In
other words is it possible to calculate the inverse matrix

A
−1

. Therefore the equation

detA = 0 (4)

has to be considered �rst. After some calculations Eq. (4)
gives rise to

(x− x0)2 + y2 = x20 − a2 = R2, (5)

where

x0 =
x′2 + y′2 + a2

2x′
. (6)

is the equation of a circle with radius R =
√
x20 − a2,

centered around the point (x0, 0). In classical geometry,
this is known as the circle of Appolonius. An illustrative
example is drawn Fig. 1. If x′ = −2a and y′ = 0, one
obtains x0 = −5/4a and R = 3/4a. If the second sensor
point (x, y) is located on this circle, the inverse thermal
problem cannot be solved. These results can be under-
stood physically. For any point of the Appolonius circle,
the ratio d1/d2 is constant and the same ratio of temper-
atures T1/T2 will be sensed. Remark that the circle is
not an isothermal line.

If x′ = y′ = 0 the Appolonius circle coincides with
the y-axis. The second sensor cannot help us to decide
whether a heat source is located in P1 or P2. Interchang-
ing the two heat sources will give the same temperatures
at the sensing points.

The circle of Appolonius tells us where the determinant
is exactly zero and hence the inverse problem cannot be
solved at all. In practice one is dealing with ill condition-
ing. It has been pointed out by several authors that the
value of the determinant is not a good criterion for the
ill conditioning of the matrix [15]. The condition number
de�ned as the quotient of the biggest eigenvalue and the
smallest one is used to measure the ill conditioning of a
matrix. However, it was proved that it is much better to
use the so-called singular values instead of the eigenval-
ues. In order to calculate the singular values, the matrix

A has to be multiplied by its Hermitian conjugate A
H
:

A
H
A. (7)

A
H
is the transpose of A whereas all elements have been

replaced by their complex conjugates. The eigenvalues λi

of A
H
A are calculated. It has been proved that all these

eigenvalues are real and positive. The singular values σi
are then found as

σi =
√
λi. (8)

The condition number κ is then de�ned as:

κ =
σmax

σmin
, (9)

where σmax and σmin denote the maximum and the min-
imum singular values. The closer the condition number

κ is to 1 the better the matrix A will be conditioned.

The use of singular values has the advantage thatA
H
A

is always a square n×nmatrix even whenA is a rectangu-
lar one. This situation often occurs in practical situations
when more sensors than heat sources are involved.

The following case with two heat sources and two sen-
sors has been analysed using the singular value approach.
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Fig. 2. Two heat sources and two sensors case. Map
of the inverse condition number as a function of the
position of the second sensor.

The two heat sources are placed in the points (−1, 0) and
(+1, 0) as shown in Fig. 2. One sensor S1 is in a �xed
position (−0.7, 0.7). The other sensor S2 could be moved
in the area −3 < x < +3 and −3 < y < +3. For each
position (x, y) of the second sensor S2 the condition num-

ber κ of the matrix A was evaluated numerically. The
results are plotted in Fig. 2. Instead of plotting κ, the
inverse condition number κ−1 has been plotted to avoid
κ = ∞ which happens when one of the singular values
turns out to be zero. The circle of Appolonius is marked
with the dashed line. The optimal position of the second
sensor, i.e. the position such that the condition number is
as close as possible to unity, is at the point (1.6, 0) where
κ−1 = 0.5 or κ = 2. Intuitively, one should expect that
the optimal position of the second sensor should be very
near to one of the heat sources. It will be proved math-
ematically later on in Sect. 5 that the optimal position
is not necessarily in the near neighbourhood of the heat
source. The circle of Appolonius has also been drawn in
Fig. 2. As expected, the condition number κ becomes
very high if the second sensor approaches the circle of
Appolonius.

Fig. 3. Two heat sources and three sensors case. Map
of the inverse condition number as a function of the
position of the third sensor.

A second example involving two heat sources and three
sensors is shown in Fig. 3. The heat sources are again
in the positions (−1, 0) and (+1, 0). Two sensors are at
�xed positions (0.2, 1.6) and (−2, 0.2), the third sensor
has variable coordinates (x, y). Again one observes that
the condition number gets worse if the third sensor is ap-
proaching one of the heat sources. The optimal position
of the third sensor is found to be at (1.8, 0) with a cor-
responding value of κ−1 = 0.45 or a condition number
κ = 2.22.

Fig. 4. Three heat sources and �ve sensors case. Map
of the inverse condition number as a function of the
position of the �fth sensor.

Figure 4 shows a simulation with three heat sources
and �ve sensors. The heat sources are at the positions
(−1, 0)(1, 0)(1, 2). Four sensors are �xed at the corners
(−3, 4), (3, 4), (3,−3) and (−3,−3). This case corre-
sponds to the actual situation of an integrated circuit
where the sensors can only be placed on the boundary of
the chip. The layout of the circuit is such that no free
space exists in the middle of the chip. The map of κ−1

due to the positions of the �fth sensor is shown in Fig. 4.
It turns out that the optimal position is in the point
(3.1,−0.4) which is also on the rectangular boundary of
the rectangle formed by the �xed sensors. The optimal
value is κ−1 = 0.15 or κ = 6.66. Again the neighbour-
hood of the heat sources must be avoided which is an
advantage from design point of view.
The dimensions x and y in Figs. 2�4 are given in di-

mensionless form. The results (i.e. the condition number
evaluation) do not vary if all dimensions are multiplied
by a constant value. As already pointed out in the pre-
vious section, the actual distances between the sensors
and heat sources should be less than or comparable to
the substrate thickness due to the limited validity of the
approximation (1).

4. Practical placement of a sensor array

around a circuit

In this section we attack a practical problem: a circuit
has been designed and there is no free space availaible to
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add temperature sensors and the related circuitry nec-
essary for temperature monitoring. The only remaining
possibility is to put the array of sensors along the bound-
ary, so that a new and expensive integrated circuit design
can be avoided.

Fig. 5. Chip layout with two heat sources and up to
32 sensors on the boundary.

We consider again the situation involving two heat
sources positioned in (−1, 0) and (+1, 0) as shown in
Fig. 5. In contrast to the previous examples the sensors
are only allowed to be placed on the circuit boundary
which is a square with a side length of 4 units. Sensors
can only be positioned in points with coordinates x = n/2
and y = m/2 where n and m are integer numbers in the
interval (−5,+5).

The iteration procedure is as follows: the �rst sensor
S1 is �xed in the point (−0.5, 2). A second sensor S2

is introduced and the map of the condition number κ is
evaluated as outlined above. The sensor S2 is then placed
in the boundary point corresponding to the best condi-
tion number, which turns out to be the point (2, 0) and
this position remains �xed during the remaining iteration
procedure. The third sensor S3 is introduced and its po-
sition is determined by searching the optimal condition
number for all the free boundary points. This procedure
is repeated till all the 32 boundary points are occupied,
as shown in Fig. 5.

Fig. 6. Condition number as a function of the number
N of sensors.

Figure 6 shows the condition number κ as a function
of the number N of sensors which are already placed.
One observes that after some iteration steps the condition
number increases linearly but still for the last step of the
iteration procedure the condition number is around κ = 2
which is a quite good value for a stable matrix inversion.
Remark also that the increase of the condition number
as a function of N is rather small. Hence a large number
of sensors is not a problem for the ill conditioning of the
inverse problem.
Again we have here a case where all sensors are rela-

tively far away from the heat sources and still the con-
dition number is quite good so that the ill conditioning
will not give rise to any numerical problems.
Putting the sensors one by one is not a guarantee that

the optimal layout will be obtained. The results in Fig. 6
clearly show that for N > 5 the condition number tends
to stabilise. Furthermore it was found that other con�g-
urations did not have a major in�uence on the condition
number as long as N > 5. For small values of N (e.g.
N = 2) the in�uence might be important.

5. Theoretical analysis

In order to explain the problem why the situation
where one of the sensors is very close to a heat source
is far from being optimal, two simple problems will be
analysed here. Both can be calculated analytically so
that a physical interpretation is straightforward.

Fig. 7. Two heat sources and two-sensors case. One
sensor S1 is very close to the heat source P1.

We consider the case of two heat sources and two sen-
sors all positioned on the x-axis (Fig. 7). One �xed sensor
S2 is just halfway the two heat sources P1 and P2. The
other sensor S1 is at a very small distance ε from the

heat source P1. The matrix A is then

A =

(
1
ε

1
2+ε

1 1

)
(10)

and hence

A
H
A =

(
1
ε2 + 1 1

ε(2+ε) + 1

1
ε(2+ε) + 1 1

(2+ε)2 + 1

)
. (11)

The eigenvalues λ1 and λ2 of (11) are found to be:

λ1 =
1

2ε2

(
1 +

√
1− 4ε2

)
≈ 1

ε2
, (12)

λ2 =
1

2ε2

(
1−

√
1− 4ε2

)
≈ 1. (13)

The approximations (12) and (13) are valid for ε → 0,
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i.e. the sensor S1 is very close to the heat source P1. Us-
ing the approximate values the condition number is then
obviously

κ =
σmax

σmin
=

√
λmax

λmin
= ε, (14)

which means that for ε→ 0, the condition number κ→ 0

and the matrix A becomes highly ill conditioned.

Fig. 8. Two heat sources and two-sensors case. Both
sensors are very close to the heat sources.

Intuitively, one should expect that putting a sensor
very close to a heat source should be the best situation
to avoid ill conditioning. The numerical examples of the
foregoing sections proved the opposite. Therefore a sec-
ond problem shown in Fig. 8 is analysed now in detail.
The matrix is now

A =

(
1
ε

1
2+ε

1
2+ε

1
ε

)
(15)

and

A
H
A =

(
1
ε2 + 1

(2+ε)2
2

ε(2+ε)

2
ε(2+ε)

1
ε2 + 1

(2+ε)2

)
. (16)

The eigenvalues of (16) are easily found to be

λ1 =

(
1

2 + ε
− 1

ε

)2

, (17)

λ2 =

(
1

2 + ε
+

1

ε

)2

. (18)

The condition number is then

κ =
σmax

σmin
=

1
2+ε + 1

ε
1

2+ε −
1
ε

≈
(
1 +

ε

2

)(
1− ε

2

)
≈ 1. (19)

For small values of ε, i.e. both sensors are very near a
heat source, the condition number κ → 1 which is the
best possible situation from numerical point of view.

6. Conclusion

In this paper we considered the inverse heat problem
on a semiconductor chip. This problem has gained at-
tention because real time monitoring of the temperature
distribution might be necessary to improve the life time
of integrated circuits. The temperature sensors have to
detect that all the transistors or subcircuits have the nor-
mal power dissipation.

It has been proved that the inverse heat problem can
give rise to mathematical instabilities. Several con�gura-
tions were treated numerically. It was found that placing
a sensor near a heat source gives rise to a worse condition
number. If all sensors are at comparable distances away
from the heat sources, the condition number is found to
be quite good. This result was checked with the help of
a very simple case where a complete analytical solution
was possible. The numerical results were con�rmed. It
was also found that if all sensors are very close to the heat
sources, the condition number is also quite good. How-
ever this situation cannot be realised in practical layouts
of integrated circuits without di�culties.
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