1,021 research outputs found
Research on cold cathodes Third quarterly report, 14 Nov. 1965 - 14 Feb. 1966
Electrical measurements on GaP/Pd diodes and Pd/BaO and Ni/BaO photoelectric work functions in cold cathode stud
Research on cold cathodes Final report
Semiconductor/metal hot electron cold cathode
Research on cold cathodes Second quarterly report, 14 Aug. - 14 Nov. 1965
GaP/tungsten and GaP/platinum diode and tungsten/barium oxide phototube fabrication and testing in cold cathode stud
Non-detection of a pulsar-powered nebula in Puppis A, and implications for the nature of the radio-quiet neutron star RX J0822-4300
We report on a deep radio search for a pulsar wind nebula associated with the
radio-quiet neutron star RX J0822-4300 in the supernova remnant Puppis A. The
well-determined properties of Puppis A allow us to constrain the size of any
nebula to less than 30 arcsec; however we find no evidence for such a source on
any spatial scale up to 30 arcmin. These non-detections result in an upper
limit on the radio luminosity of any pulsar-powered nebula which is three
orders of magnitude below what would be expected if RX J0822-4300 was an
energetic young radio pulsar beaming away from us, and cast doubt on a recent
claim of X-ray pulsations from this source. The lack of a radio nebula leads us
to conclude that RX J0822-4300 has properties very different from most young
radio pulsars, and that it represents a distinct population which may be as
numerous, or even more so, than radio pulsars.Comment: 5 pages, including 2 embedded EPS figures, uses emulateapj.sty.
Accepted to ApJ Letters (minor changes made following referee's report
General Relativistic Electromagnetic Fields of a Slowly Rotating Magnetized Neutron Star. I. Formulation of the equations
We present analytic solutions of Maxwell equations in the internal and
external background spacetime of a slowly rotating magnetized neutron star. The
star is considered isolated and in vacuum, with a dipolar magnetic field not
aligned with the axis of rotation. With respect to a flat spacetime solution,
general relativity introduces corrections related both to the monopolar and the
dipolar parts of the gravitational field. In particular, we show that in the
case of infinite electrical conductivity general relativistic corrections due
to the dragging of reference frames are present, but only in the expression for
the electric field. In the case of finite electrical conductivity, however,
corrections due both to the spacetime curvature and to the dragging of
reference frames are shown to be present in the induction equation. These
corrections could be relevant for the evolution of the magnetic fields of
pulsars and magnetars. The solutions found, while obtained through some
simplifying assumption, reflect a rather general physical configuration and
could therefore be used in a variety of astrophysical situations.Comment: A few typos corrected; matches the versions in MNRA
SGRs and AXPs proposed as ancestors of the Magnificent seven
The recently suggested correlation between the surface temperature and the
magnetic field in isolated neutron stars does not seem to work well for SGRs,
AXPs and X-ray dim isolated neutron stars (XDINs; specifically the Magnificent
Seven or M7). Instead by appealing to a Color-Flavor Locked Quark Star (CFLQS)
we find a more natural explanation. In this picture, the heating is provided by
magnetic flux expulsion from a crust-less superconducting quark star. Combined
with our previous studies concerning the possibility of SGRs, AXPs, and XDINs
as CFLQSs, this provides another piece of evidence that these objects are all
related. Specifically, we propose that XDINs are the descendants of SGRs and
AXPs.Comment: submitted to A&A letters to the edito
Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde
Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex~ ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes it feasible to observe its less common isotopologues. As a step in our investigation of C-13 fractionation patterns in the ISM, we here present comparisons between observations of the C-13 fraction in formaldehyde, and chemical fractionation models
Flux Expulsion - Field Evolution in Neutron Stars
Models for the evolution of magnetic fields of neutron stars are constructed,
assuming the field is embedded in the proton superconducting core of the star.
The rate of expulsion of the magnetic flux out of the core, or equivalently the
velocity of outward motion of flux-carrying proton-vortices is determined from
a solution of the Magnus equation of motion for these vortices. A force due to
the pinning interaction between the proton-vortices and the neutron-superfluid
vortices is also taken into account in addition to the other more conventional
forces acting on the proton-vortices. Alternative models for the field
evolution are considered based on the different possibilities discussed for the
effective values of the various forces. The coupled spin and magnetic evolution
of single pulsars as well as those processed in low-mass binary systems are
computed, for each of the models. The predicted lifetimes of active pulsars,
field strengths of the very old neutron stars, and distribution of the magnetic
fields versus orbital periods in low-mass binary pulsars are used to test the
adopted field decay models. Contrary to the earlier claims, the buoyancy is
argued to be the dominant driving cause of the flux expulsion, for the single
as well as the binary neutron stars. However, the pinning is also found to play
a crucial role which is necessary to account for the observed low field binary
and millisecond pulsars.Comment: 23 pages, + 7 figures, accepted for publication in Ap
- …