1,144 research outputs found

    Issues in Formation of Cryogenic Pellets for Fusion Applications

    Get PDF

    Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice – Effects of peripheral axotomy or hindpaw inflammation

    Get PDF
    Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)1–VGLUT3 transcripts in lumbar 4–5 (L4–5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4–5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III–IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III–IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.Fil: Malet, Mariana. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vieytes, C. A.. Universidad Austral. Facultad de Ciencias Biomédicas; ArgentinaFil: Lundgren, K. H.. University of Cincinnati; Estados UnidosFil: Seal, R. P.. University of Pittsburgh; Estados UnidosFil: Tomasella, María Eugenia. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Seroogy, K. B.. University of Cincinnati; Estados UnidosFil: Hökfelt, T.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G. F.. University of Pittsburgh; Estados UnidosFil: Brumovsky, Pablo Rodolfo. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Pittsburgh; Estados Unido

    Performance Analysis of Throughput Efficient Switch-over between FSO and mmW Links

    Get PDF
    Free Space Optics (FSO) links provide usage of high bandwidth and the flexibility of wireless communication links. However, weather patterns like fog and heavy snow fall limit the availability of FSO. Another technology providing similar properties regarding offered data rates and flexibility of setup is Millimeter Wave Technology (mmW), operating at several tens of GHz. In this case, heavy rain limits mmW link availability. A combination of both technologies had been proved to be very effective to achieve very high availability. Different hybrid architectures of these two links and switch-over techniques had been proposed in the recent years. All of these techniques require redundant transmission on either both transmission links or waste bandwidth of backup link when main FSO link is operational. In this paper, a switch-over between these technologies is proposed, to maintain high availability without the loss of transmission bandwidth. The performance of this switch-over has been simulated for more than one year measured availability data for hybrid network of mmW link and FSO link. The switch over behavior has also been simulated for fog, rain and snow events. It has been shown that the availability with switch-over reaches the redundant link availability but switchover can save more than 90% redundant transmission and increase the hybrid network throughput significantly

    Some lumbar sympathetic neurons develop a glutamatergic phenotype after peripheral axotomy with a note on VGLUT2-positive perineuronal baskets

    Get PDF
    Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporter (VGLUT) types 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin gene-related peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT2-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT2 protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT2-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT2 protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT2 in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT2 or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT1-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT1 or VGLUT3 mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets.Fil: Brumovsky, Pablo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Seroogy, Kim B.. University of Cincinnati; Estados UnidosFil: Lundgren, Kerstin H.. University of Cincinnati; Estados UnidosFil: Watanabe, Masahiko. Hokkaido University School of Medicine; JapónFil: Hökfelt, Tomas. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G.F.. Univeristy of Pittsburgh. School of Medicine; Estados Unido

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse urinary bladder

    Get PDF
    Purpose: Vesicular glutamate transporters (VGLUTs), essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, the expression of VGLUTs in neurons innervating the urinary bladder has not yet been analyzed. Here, we study the presence of VGLUTs type-1, -2 and -3 (VGLUT1, VGLUT2 and VGLUT3, respectively) in mouse urinary bladder neurons. Materials and Methods: Expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide (CGRP) was analyzed by immunohistochemistry in retrogradely labeled primary afferent and autonomic neurons of BALB/C mice after injecting Fast Blue in the urinary bladder wall. To study VGLUT3, retrograde tracing of the urinary bladder was performed in transgenic mice where VGLUT3 is identified by detection of enhanced green fluorescent protein (EGFP). Results: Most urinary bladder DRG neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Coexpression with CGRP was only observed for VGLUT2. Occasional VGLUT2-immunoreactive (IR) neurons were seen in the major pelvic ganglion (MPG). Abundant VGLUT2-IR nerves were detected in the urinary bladder dome, trigone and also the urethra; VGLUT1-IR nerves were discretely present. Conclusions: We present novel data on the expression of VGLUTs in sensory and autonomic neurons innervating the mouse urinary bladder. The frequent association of VGLUT2 and CGRP in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the urinary bladder, such as discomfort and pain.Fil: Brumovsky, Pablo Rodolfo. Universidad Austral. Facultad de Ciencias Biomédicas. Laboratorio de Investigaciones Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados UnidosFil: Seal, Rebecca P.. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados UnidosFil: Lundgren, Kerstin H.. University of Cincinnati. Department of Neurology; Estados UnidosFil: Seroogy, Kim B.. University of Cincinnati. Department of Neurology; Estados UnidosFil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; JapónFil: Gebhart, G. F.. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados Unido

    Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines

    Full text link
    The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision suppor
    corecore