433 research outputs found
Multiple phases in stochastic dynamics: geometry and probabilities
Stochastic dynamics is generated by a matrix of transition probabilities.
Certain eigenvectors of this matrix provide observables, and when these are
plotted in the appropriate multi-dimensional space the phases (in the sense of
phase transitions) of the underlying system become manifest as extremal points.
This geometrical construction, which we call an
\textit{observable-representation of state space}, can allow hierarchical
structure to be observed. It also provides a method for the calculation of the
probability that an initial points ends in one or another asymptotic state
Ratcheting up energy by means of measurement
The destruction of quantum coherence can pump energy into a system. For our
examples this is paradoxical since the destroyed correlations are ordinarily
considered negligible. Mathematically the explanation is straightforward and
physically one can identify the degrees of freedom supplying this energy.
Nevertheless, the energy input can be calculated without specific reference to
those degrees of freedom.Comment: To appear in Phys. Rev. Let
Imaging geometry through dynamics: the observable representation
For many stochastic processes there is an underlying coordinate space, ,
with the process moving from point to point in or on variables (such as
spin configurations) defined with respect to . There is a matrix of
transition probabilities (whether between points in or between variables
defined on ) and we focus on its ``slow'' eigenvectors, those with
eigenvalues closest to that of the stationary eigenvector. These eigenvectors
are the ``observables,'' and they can be used to recover geometrical features
of
Path integral in a magnetic field using the Trotter product formula
The derivation of the Feynman path integral based on the Trotter product
formula is extended to the case where the system is in a magnetic field.Comment: To appear in the American Journal of Physics, 200
Nonlinear Dirac and diffusion equations in 1 + 1 dimensions from stochastic considerations
We generalize the method of obtaining the fundamental linear partial
differential equations such as the diffusion and Schrodinger equation, Dirac
and telegrapher's equation from a simple stochastic consideration to arrive at
certain nonlinear form of these equations. The group classification through one
parameter group of transformation for two of these equations is also carried
out.Comment: 18 pages, Latex file, some equations corrected and group analysis in
one more case adde
Extinction of metastable stochastic populations
We investigate extinction of a long-lived self-regulating stochastic
population, caused by intrinsic (demographic) noise. Extinction typically
occurs via one of two scenarios depending on whether the absorbing state n=0 is
a repelling (scenario A) or attracting (scenario B) point of the deterministic
rate equation. In scenario A the metastable stochastic population resides in
the vicinity of an attracting fixed point next to the repelling point n=0. In
scenario B there is an intermediate repelling point n=n_1 between the
attracting point n=0 and another attracting point n=n_2 in the vicinity of
which the metastable population resides. The crux of the theory is WKB method
which assumes that the typical population size in the metastable state is
large. Starting from the master equation, we calculate the quasi-stationary
probability distribution of the population sizes and the (exponentially long)
mean time to extinction for each of the two scenarios. When necessary, the WKB
approximation is complemented (i) by a recursive solution of the
quasi-stationary master equation at small n and (ii) by the van Kampen
system-size expansion, valid near the fixed points of the deterministic rate
equation. The theory yields both entropic barriers to extinction and
pre-exponential factors, and holds for a general set of multi-step processes
when detailed balance is broken. The results simplify considerably for
single-step processes and near the characteristic bifurcations of scenarios A
and B.Comment: 19 pages, 7 figure
Efficiency of a thermodynamic motor at maximum power
Several recent theories address the efficiency of a macroscopic thermodynamic
motor at maximum power and question the so-called "Curzon-Ahlborn (CA)
efficiency." Considering the entropy exchanges and productions in an n-sources
motor, we study the maximization of its power and show that the controversies
are partly due to some imprecision in the maximization variables. When power is
maximized with respect to the system temperatures, these temperatures are
proportional to the square root of the corresponding source temperatures, which
leads to the CA formula for a bi-thermal motor. On the other hand, when power
is maximized with respect to the transitions durations, the Carnot efficiency
of a bi-thermal motor admits the CA efficiency as a lower bound, which is
attained if the duration of the adiabatic transitions can be neglected.
Additionally, we compute the energetic efficiency, or "sustainable efficiency,"
which can be defined for n sources, and we show that it has no other universal
upper bound than 1, but that in certain situations, favorable for power
production, it does not exceed 1/2
Extinction in Lotka-Volterra model
Competitive birth-death processes often exhibit an oscillatory behavior. We
investigate a particular case where the oscillation cycles are marginally
stable on the mean-field level. An iconic example of such a system is the
Lotka-Volterra model of predator-prey competition. Fluctuation effects due to
discreteness of the populations destroy the mean-field stability and eventually
drive the system toward extinction of one or both species. We show that the
corresponding extinction time scales as a certain power-law of the population
sizes. This behavior should be contrasted with the extinction of models stable
in the mean-field approximation. In the latter case the extinction time scales
exponentially with size.Comment: 11 pages, 17 figure
- …
