433 research outputs found

    Multiple phases in stochastic dynamics: geometry and probabilities

    Full text link
    Stochastic dynamics is generated by a matrix of transition probabilities. Certain eigenvectors of this matrix provide observables, and when these are plotted in the appropriate multi-dimensional space the phases (in the sense of phase transitions) of the underlying system become manifest as extremal points. This geometrical construction, which we call an \textit{observable-representation of state space}, can allow hierarchical structure to be observed. It also provides a method for the calculation of the probability that an initial points ends in one or another asymptotic state

    Ratcheting up energy by means of measurement

    Get PDF
    The destruction of quantum coherence can pump energy into a system. For our examples this is paradoxical since the destroyed correlations are ordinarily considered negligible. Mathematically the explanation is straightforward and physically one can identify the degrees of freedom supplying this energy. Nevertheless, the energy input can be calculated without specific reference to those degrees of freedom.Comment: To appear in Phys. Rev. Let

    Imaging geometry through dynamics: the observable representation

    Full text link
    For many stochastic processes there is an underlying coordinate space, VV, with the process moving from point to point in VV or on variables (such as spin configurations) defined with respect to VV. There is a matrix of transition probabilities (whether between points in VV or between variables defined on VV) and we focus on its ``slow'' eigenvectors, those with eigenvalues closest to that of the stationary eigenvector. These eigenvectors are the ``observables,'' and they can be used to recover geometrical features of VV

    Path integral in a magnetic field using the Trotter product formula

    Get PDF
    The derivation of the Feynman path integral based on the Trotter product formula is extended to the case where the system is in a magnetic field.Comment: To appear in the American Journal of Physics, 200

    Nonlinear Dirac and diffusion equations in 1 + 1 dimensions from stochastic considerations

    Full text link
    We generalize the method of obtaining the fundamental linear partial differential equations such as the diffusion and Schrodinger equation, Dirac and telegrapher's equation from a simple stochastic consideration to arrive at certain nonlinear form of these equations. The group classification through one parameter group of transformation for two of these equations is also carried out.Comment: 18 pages, Latex file, some equations corrected and group analysis in one more case adde

    Extinction of metastable stochastic populations

    Full text link
    We investigate extinction of a long-lived self-regulating stochastic population, caused by intrinsic (demographic) noise. Extinction typically occurs via one of two scenarios depending on whether the absorbing state n=0 is a repelling (scenario A) or attracting (scenario B) point of the deterministic rate equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point next to the repelling point n=0. In scenario B there is an intermediate repelling point n=n_1 between the attracting point n=0 and another attracting point n=n_2 in the vicinity of which the metastable population resides. The crux of the theory is WKB method which assumes that the typical population size in the metastable state is large. Starting from the master equation, we calculate the quasi-stationary probability distribution of the population sizes and the (exponentially long) mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is complemented (i) by a recursive solution of the quasi-stationary master equation at small n and (ii) by the van Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multi-step processes when detailed balance is broken. The results simplify considerably for single-step processes and near the characteristic bifurcations of scenarios A and B.Comment: 19 pages, 7 figure

    Efficiency of a thermodynamic motor at maximum power

    Full text link
    Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called "Curzon-Ahlborn (CA) efficiency." Considering the entropy exchanges and productions in an n-sources motor, we study the maximization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bi-thermal motor. On the other hand, when power is maximized with respect to the transitions durations, the Carnot efficiency of a bi-thermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or "sustainable efficiency," which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, favorable for power production, it does not exceed 1/2

    Extinction in Lotka-Volterra model

    Full text link
    Competitive birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the Lotka-Volterra model of predator-prey competition. Fluctuation effects due to discreteness of the populations destroy the mean-field stability and eventually drive the system toward extinction of one or both species. We show that the corresponding extinction time scales as a certain power-law of the population sizes. This behavior should be contrasted with the extinction of models stable in the mean-field approximation. In the latter case the extinction time scales exponentially with size.Comment: 11 pages, 17 figure
    corecore