787 research outputs found

    Parking and the visual perception of space

    Full text link
    Using measured data we demonstrate that there is an amazing correspondence among the statistical properties of spacings between parked cars and the distances between birds perching on a power line. We show that this observation is easily explained by the fact that birds and human use the same mechanism of distance estimation. We give a simple mathematical model of this phenomenon and prove its validity using measured data

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models

    Multilayered feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India

    Full text link
    In the present research, possibility of predicting average summer-monsoon rainfall over India has been analyzed through Artificial Neural Network models. In formulating the Artificial Neural Network based predictive model, three layered networks have been constructed with sigmoid non-linearity. The models under study are different in the number of hidden neurons. After a thorough training and test procedure, neural net with three nodes in the hidden layer is found to be the best predictive model.Comment: 19 pages, 1 table, 3 figure

    Mapping ecologically sensitive, significant and salient areas of Western Ghats: proposed protocols and methodology

    Get PDF
    The Western Ghats Ecology Expert Panel (WGEEP) of the Ministry of Environment and Forests, Government of India (GOI) has been asked to identify ecologically sensitive areas (ESAs) along the Western Ghats, and to suggest how to manage them. The concept of ESAs has been extensively discussed in the literature. Several ESAs have been set up in India over the last 22 years under the Environment Protection Act, 1986, and a GOI committee under the chairmanship of Pranob Sen has proposed certain criteria for identification of ESAs. However, WGEEP noted that we still lack a global consensus either on the criteria to define ESAs or on a workable methodology to identify them. Furthermore, there are no clear guidelines on the management regime that should prevail in ESAs, and the Pranob Sen Committee has not addressed this issue at all. Hence, WGEEP decided to undertake an exercise of defining ESAs and developing a workable methodology to assign levels of ecological significance/sensitivity as a first step towards putting ESAs on the map of the Western Ghats. This article provides a report on the outcome of a series of discussions and consultations held by WGEEP to build a consensus on defining and mapping ESAs. It hopes to provoke discussion and feedback from a wider section of experts, with the aim of finalizing a generic methodology for mapping ESAs in other ecologically sign ificant, biodiversity-rich areas within and outside the country. We hope to shortly prepare a companion paper that will address the equally vital management issues

    Power and the durability of poverty: a critical exploration of the links between culture, marginality and chronic poverty

    Get PDF

    Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5 days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies

    Water Filtration Using Plant Xylem

    Get PDF
    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings

    The extreme positive Indian Ocean Dipole of 2019 and associated Indian summer monsoon rainfall response

    Get PDF
    The positive Indian Ocean Dipole (IOD) event in 2019 was among the strongest on record, while the Indian Summer monsoon (ISM) was anomalously dry in June then very wet by September. We investigated the relationships between the IOD, Pacific sea surface temperature (SST) and ISM rainfall during 2019 with an atmospheric general circulation model forced by observed SST anomalies. The results show that the extremely positive IOD was conducive to a wetter-than-normal ISM, especially late in the season when the IOD strengthened and was associated with anomalous low-level divergence over the eastern equatorial Indian Ocean and convergence over India. However, a warm SST anomaly in the central equatorial Pacific contributed to low level divergence and decreased rainfall over India in June. These results help to better understand the influence of the tropical SST anomalies on the seasonal evolution of ISM rainfall during extreme IOD events

    The International Collaboration for Research methods Development in Oncology (CReDO) workshops: shaping the future of global oncology research

    Get PDF
    Low-income and middle-income countries (LMICs) have a disproportionately high burden of cancer and cancer mortality. The unique barriers to optimum cancer care in these regions necessitate context-specific research. The conduct of research in LMICs has several challenges, not least of which is a paucity of formal training in research methods. Building capacity by training early career researchers is essential to improve research output and cancer outcomes in LMICs. The International Collaboration for Research methods Development in Oncology (CReDO) workshop is an initiative by the Tata Memorial Centre and the National Cancer Grid of India to address gaps in research training and increase capacity in oncology research. Since 2015, there have been five CReDO workshops, which have trained more than 250 oncologists from India and other countries in clinical research methods and protocol development. Participants from all oncology and allied fields were represented at these workshops. Protocols developed included clinical trials, comparative effectiveness studies, health services research, and observational studies, and many of these protocols were particularly relevant to cancer management in LMICs. A follow-up of these participants in 2020 elicited an 88% response rate and showed that 42% of participants had made progress with their CReDO protocols, and 73% had initiated other research protocols and published papers. In this Policy Review, we describe the challenges to research in LMICs, as well as the evolution, structure, and impact of CReDO and other similar workshops on global oncology research
    • …
    corecore