
1.  Introduction
The Indian Ocean Dipole (IOD) is one of the dominant modes of variability of the tropical Indian Ocean 
which was discovered and named at the end of the 1990s (Saji et al., 1999; Webster et al., 1999). The 
IOD has been recognized as being forced by ENSO (Allan et al., 2001; Baquero-Bernal et al., 2002; Dom-
menget, 2011; Huang & Kinter, 2002; Zhao et al., 2019) as well as a self-sustained mode of oscillation 
(Ashok et al., 2003; Behera et al., 2006; Yamagata et al., 2004), with modeling frameworks supporting 
both hypotheses (Behera et al., 2006; Crétat et al., 2018; Fischer et al., 2005; Wang et al., 2019). The IOD 
has also been suggested as a potential trigger for ENSO (Cai et al., 2019; Izumo et al., 2010; Jourdain 
et al., 2016; Luo et al., 2010; Wang et al., 2019; Wieners et al., 2017; Zhou et al., 2015), with IOD events 
co-occurring with ENSO that may fasten its phase transition (Kug & Ham, 2012; Kug et al., 2006). Past 
changes in the frequency and in the teleconnections of the IOD have been documented on long-time 
records (e.g., Abram et al., 2020).

The IOD teleconnections span from nearby countries like India (Ashok et al., 2001; Cherchi et al., 2007; 
Cherchi & Navarra, 2013; Chowdary et al., 2016; Krishnan et al., 2011; Krishnaswamy et al., 2015; Li 
et al., 2003; Meehl et al., 2003; Srivastava et al., 2019; Wu & Kirtman, 2004, as some examples of the wide 
published literature available), Indonesia (Pan et al., 2018), Africa (Black et al., 2003; Endris et al., 2019; 
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Manatsa & Behera,  2013), and Australia (i.e., Cai et  al.,  2009; Dey et  al.,  2019; Hossain et  al.,  2020; 
Ummenhofer et  al.,  2013), to more remote places, like Brazil (Bazo et  al.,  2013; Chan et  al.,  2008; 
Taschetto & Ambrizzi, 2012).

Here we are particularly interested on the relationship between the IOD and the Indian summer mon-
soon (ISM). Summer monsoon rainfall over India represents the largest source of annual water for the 
country (Archer et  al.,  2010; Mall et  al.,  2006) and is important for the agrarian economy (Gadgil & 
Gadgil, 2006; Webster et al., 1998). Despite its annual occurrence, the Indian summer monsoon is high-
ly variable in time and space, with the largest portion of its variability modulated by ENSO, as known 
since the beginning of the 19th century (Kirtman & Shukla, 2000; Sikka, 1980; Sikka & Ratna, 2011; 
Rasmusson & Carpenter, 1983; Ratna et al., 2011; Walker, 1924, as few examples). Toward the end of the 
20th century a weakening of the ISM-ENSO relationship has been identified (Kinter et al., 2002; Kumar 
et al., 1999) with the IOD recognized as a potential trigger of ISM rainfall. Several papers reported the 
individual and combined influences of ENSO and IOD on ISM rainfall and found that both phenomena, 
individually and combined, affect ISM rainfall performance (Ashok et  al.,  2004; Hrudya et  al.,  2020; 
Krishnaswamy et al., 2015; Li et al., 2017; Sikka & Ratna, 2011).

The active and break spells of monsoons are regulated by the boreal summer intraseasonal oscillation  
(BSISO), which propagates north from the equator into the Indian monsoon region and substantially 
affects the monsoon rainfall (Sikka & Gadgil, 1980; Sperber et al., 2000). Within the monsoon season, 
the mean structure of moisture convergence and meridional specific humidity distribution undergoes 
significant changes in contrasting IOD years, which in turn influences the meridional propagation of 
BSISO and hence the related precipitation anomalies over India (Ajayamohan et  al.,  2008; Kikuchi 
et al., 2012; Konda & Vissa, 2019; Singh & Dasgupta, 2017). At this timescale, the ocean-atmosphere 
dynamical coupling has been found to be important to the extended Indian summer monsoon break of 
July 2002 (e.g., Krishnan et al., 2006).

Some recent studies have investigated the causes of the strong IOD event in 2019. In particular, it has 
been found that the occurrence of 2019 extreme positive IOD event features the strongest easterly and 
southerly wind anomalies on record, leading to the strongest wind speed that facilitated the latent cool-
ing to overcome the increased radiative warming over the eastern equatorial Indian Ocean, leading to 
the unique thermodynamical forcing (Wang et  al.,  2020). The thermocline warming associated with 
anomalous ocean downwelling in the southwest tropical Indian Ocean triggered atmospheric convec-
tion to induce an easterly wind anomaly along the equator and the positive feedbacks led to an IOD 
event (Du et al., 2020). Also, the record-breaking interhemispheric pressure gradient over the Indo-Pa-
cific region induced northward cross-equatorial flow over the western Maritime Continent, able to trig-
ger strong wind-evaporation-SST and thermocline feedbacks that contributed to the strong IOD (Lu & 
Ren, 2020). Wang and Cai (2020) described how the consecutive occurrence of positive IOD in 2018 and 
2019, along with the evolution of a Central Pacific El Niño, influenced Australian climate. The 2019 
IOD event led to unusually warm conditions in many parts of East Asia during 2019–2020 winter (Doi 
et al., 2020a, 2020b), though not necessarily linked with the severe drought that occurred during that 
fall in East China (Ma et al., 2020). In terms of predictability, such an extreme event like the 2019 IOD 
could be predictable a few seasons in advance (Doi et al., 2020a, 2020b).

In this study, we intend to investigate the dynamical aspects of the relationship between IOD and Indian 
summer monsoon rainfall with a specific focus on 2019. That year was peculiar in terms of the seasonal 
evolution of precipitation over India with dry conditions at the beginning of the monsoon season and 
very wet conditions toward the end (Yadav et al., 2020). In particular, we designed a set of sensitivity 
experiments to verify the role of anomalous SST in the Indian Ocean, i.e., the developing IOD that year, 
and the SST anomalies elsewhere. The work is organized as follows: Section 2 describes the data used 
for the analysis as well as the model and experiments performed. Section 3 is dedicated to the observed 
characteristics of IOD and ISM during 2019 with specific attention to the evolution within the summer 
season. Section 4 shows the results from the sensitivity experiments performed, including a discussion 
of the main results obtained. Finally, Section 5 summarizes the main finding and provides future per-
spectives from this analysis.

RATNA ET AL.

10.1029/2020GL091497

2 of 11



Geophysical Research Letters

2.  Methods
2.1.  Observed Datasets and Indices

The SST anomaly difference between the west (50°E–70°E, 10°S–10°N) and east (90°E–110°E, 10°S–0°S) 
equatorial Indian Ocean, identified as the Dipole Mode Index (DMI; Saji et al., 1999), is used as the metric 
for the IOD and we computed it using three different datasets: Extended Reconstructed Sea Surface Tem-
perature v5 (ERSST; Boyin Huang et al., 2017) available at 2° latitude-longitude degree resolution, National 
Oceanic and Atmospheric Administration optimum interpolation SST version 2 (NOAA OISSTv2; Reynolds 
et al., 2002) available at 0.25° resolution, and Hadley Centre Sea Ice and Sea Surface Temperature data set 
v1.1 (HadISST; Rayner et al., 2003) available at 1° resolution. Other indices used are: Nino3.4 (area averaged 
SST anomaly over equatorial Pacific, 5°N–5°S 170°W–120°W) from https://psl.noaa.gov/gcos_wgsp/Time-
series/Nino34/ and El Niño-Modoki (Ashok et al., 2007; Weng et al., 2007) from http://www.jamstec.go.jp/
virtualearth/general/en/index.html.

For rainfall we used the Global Precipitation Climatology Project (GPCP) data (Adler et al., 2003) available 
at 2.5° resolution. We also used the Homogeneous Indian Monthly Rainfall Data Sets (Kothawale & Ra-
jeevan, 2017) from https://tropmet.res.in/static_pages.php?page_id=53. Other atmospheric variables and 
the global SST field are taken from National Center for Environmental Prediction-Department of Energy 
(NCEP-DOE) Reanalysis 2 (Kanamitsu et al., 2002) available at 2.5° resolution. All anomalies are calculated 
with respect to the 1981–2010 climatology.

2.2.  The IGCM4 Model and Sensitivity Experiments

The Intermediate General Circulation Model version 4 (IGCM4; Joshi et al., 2015) is a global spectral prim-
itive equation atmospheric model with a spectral truncation at T42 (corresponding to 128 × 64 grid points 
in the horizontal) and 20 layers in the vertical, with the top at 50 hPa. This configuration, i.e., T42L20, is 
the standard for studies of the troposphere and climate (Joshi et al., 2015). IGCM4 has been extensively 
used in climate research, process modeling and atmospheric dynamics (O’Callaghan et  al.,  2014; Ratna 
et al., 2020; van der Wiel et al., 2016). The IGCM4 gives a good representation of the mean climate state 
(Joshi et  al.,  2015), in particular the simulated climatology and annual cycle over Asia is in reasonable 
agreement with the reanalysis for temperature and precipitation (Ratna et al., 2020). The physical parame-
terization schemes used here are the same as in Joshi et al. (2015) and Ratna et al. (2020).

The set of experiments performed with the IGCM4 consist of a control simulation (CTRL) with prescribed 
SST obtained from a climatology (1981–2010) of the skin temperature in the NCEP-DOE Reanalysis 2 (Ka-
namitsu et al., 2002) and two sensitivity experiments where the 2019 SST anomaly is added to the CTRL 
climatology globally (IODglob) and only over the Indian Ocean (IODreg). All other boundaries conditions 
are the same as in CTRL. The surface albedo has been adjusted to indicate the presence or absence of sea 
ice according to whether the new surface temperature was below freezing. We used the greenhouse gas 
concentration in the model which is close to the 1995 value, the midpoint of the 1981–2010 climatology. For 
each simulation, the model is integrated for 55 years and the mean of the last 50 years is analyzed, excluding 
the first five years as model spin up. These simulations are long enough to allow a clear separation of the 
response to the SST anomalies from the internally generated variability, especially for “noisy” variables such 
as precipitation.

3.  2019 Indian Ocean Dipole and Indian Summer Monsoon
The Indian Ocean Dipole (IOD) was unusually strong in 2019 (Figure 1a). The positive IOD event was the 
strongest of the last two decades, and possibly the strongest of the last 38 years. The September-November 
2019 DMI was four standard deviations above the 1981–2010 climatology in the ERSST data. This exceed-
ed the previous strong event of 1997 in the ERSST and NOAA-OI-SST datasets, while 1997 remained the 
strongest in HadISST (Figure S1). The 2019 positive IOD phase arose from both negative SST anomalies over 
the eastern equatorial Indian Ocean (EEIO) and warm SST anomalies over the western equatorial Indian 
Ocean (WEIO) from June to October (Figures 1c–1h). However, the evolution of the event was strongly 
determined by the EEIO, which largely cooled from climatological conditions in May to almost 1 K cooler 
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than normal by October. On the other hand, the WEIO stayed more constant (i.e., less than 1 K warmer than 
normal) throughout the period (Figure 1b).

The total seasonal (June-September) rainfall over India was 110% with respect to its long period average, 
with the June rainfall quite low (67%) while the September one quite excessive (152%) (Yadav et al., 2020). 
These conditions have been part of large-scale rainfall anomalies observed in the regions surrounding the 
Indian Ocean in 2019 (Figures 2a, 2d, and 2g). In this study we are interested to understand what anomalous 
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Figure 1.  (a) Standardized monthly Dipole Mode Index (DMI) from 1980 to 2019 calculated using ERSST data. (b) Annual cycle of Indian and Pacific Oceans 
climate indices (k) for 2019 (as discussed in Section 2). (c)–(h) Observed 2019 SST anomalies from June to November using NCEP2 data. ERSST, Extended 
Reconstructed Sea Surface Temperature; SST, Sea Surface Temperature.
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climate conditions within the 2019 summer season contributed to monsoon rainfall variation from a dry 
June to a wet September over India.

The annual evolution of the IOD index is compared with ENSO associated indices for the year 2019 (Fig-
ure 1b). The IOD is strong compared to the rest of indices during 2019 so it is interesting to consider the 
role of IOD on the seasonal evolution of ISM rainfall. The IOD index intensified from July and reached its 
peak during October-November (Figure 1b), due to the strengthening of the SST anomaly in the EEIO, as 
noted above. Nino3.4 SST indicates that ENSO condition was slightly positive in June, before decreasing in 
strength to reach zero anomaly in September. El Niño-Modoki index, which is indicator of a central Pacific 
SST anomaly, remained slightly above normal throughout the year (Figures 1c–1h).

We have compared (Figure S2) the seasonal evolution of the IOD, Pacific indices and ISM rainfall (Table S1) 
with three other strong IOD events (1994, 1997, 2006) to consider if they support our finding that a strength-
ening positive IOD may be associated with a wetter ISM when not overwhelmed by ENSO influences. In 
1994, a positive IOD strengthened further from June to August. Although the central Pacific was warmer 
than normal, El Niño state were not reached, perhaps allowing the IOD to dominate and contribute to 
above-average ISM rainfall in most months and in the seasonal total (Behera et al., 1999; Ashok et al., 2004; 
Sikka & Ratna,  2011). By contrast, 1997 was dominated by a very strong El Niño, though the expected 
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Figure 2.  (a, d, and g) Observed GPCP rainfall anomaly (mm/day, shaded) and NCEP2 850 hPa wind anomaly (m/s, vectors) for June-September mean, 
June and September, respectively. (b, e, and h) and (c, f, and l) are the same as (a, d, and g) but for IODglob and IODreg experiments, respectively. Shaded 
precipitation anomalies are significant at 90% level using a Student's t-test. GPCP, Global Precipitation Climatology Project.
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ENSO-induced anomalous subsidence may have been neutralized/reduced by anomalous IOD-induced 
convergence over the Bay of Bengal (Ashok et al., 2001) and contributed to a near-normal ISM season. Dur-
ing 2006, the onset of positive IOD was late compared to the other years considered, perhaps contributing 
to above-normal rainfall in the final months of the ISM (the Modoki index was close to normal and Nino3.4 
only warmed to an El Niño state later in the year). Overall, out of these 4 years, the two with the strongest 
positive IOD and relatively weak Nino3.4 anomalies (1994 and 2019) had excess ISM rainfall (+15% and 
+16% with respect to the 1981–2010 climatology, Table S1). There was a smaller increase in ISM rainfall in 
2006 (+9%) when the IOD event developed later, while 1997 had a strong El Niño and a normal ISM season 
(+2%).

3.1.  Mechanisms Contributing to the Anomalous 2019 Indian Summer Monsoon Rainfall

To understand the contribution that SST forcing may make to the 2019 rainfall variability over the Indian 
landmass, we compared the model simulated anomaly (IODglob and IODreg as explained in Section 2) with 
the observed anomaly. Following the design of the experiments, the comparison is focused in the identifica-
tion of the rainfall pattern anomalies in the different cases. Of course, we do not expect perfect agreement, 
even were the model perfect, because of internal atmospheric variability unrelated to the 2019 SST anom-
alies. Nevertheless, both sensitivity experiments reproduce a dipole precipitation anomaly over the south 
equatorial Indian Ocean (dry in the east, wet in the west; Figures 2a–2c) during the whole monsoon season 
(June-September) that closely resembles the observed pattern. Observed Jun-Sep precipitation is above av-
erage over the Indian land mass and over the Bay of Bengal, and both experiments simulate a qualitatively 
similar pattern. Instead, the intensity of the anomaly is larger when the model is forced with only Indian 
Ocean SST anomalies (IODreg; Figure 2c) compared to the global SST (IODglob) anomaly (Figure 2b). This 
indicates the importance of the 2019 Indian Ocean SST anomaly in contributing to wet conditions over 
India, though it is modulated by SST anomalies elsewhere.

The comparison of the sensitivity experiments also illuminates on the possible mechanisms behind the two 
contrasting months of the season (i.e., dry June and wet September). In June, the model response to Indi-
an Ocean SST forcing produces a stronger south-westerly monsoon flow and wet anomalies over western 
India (IODreg; Figure 2f), whereas including SST anomalies from other ocean basins (IODglob; Figure 2e) 
suppresses the wet anomaly and brings the simulated response closer to the observations (with the excep-
tion of the western Indian Ocean). The negative rainfall anomaly over EEIO is also stronger in IODglob 
compared to IODreg and more similar to the observations. On the other hand, both IODglob and IODreg 
experiments have a wet anomaly over India in September, as is also seen in the observations (though the 
observed anomaly is stronger and more extensive). These results indicate that the 2019 Indian Ocean SST 
anomalies suppress rainfall in the EEIO and favor a wetter than normal Indian monsoon, but that in June 
the latter is more than offset by a response to the SST anomaly outside the Indian Ocean, resulting in the 
dry anomaly, as it is observed.

Considering the whole 2019 season, stronger low-level southerly wind anomalies dominated over the Bay 
of Bengal due to low-level divergence over EEIO associated with the very positive IOD (Figures 2a–2c). 
The low-level winds are similar to Behera and Ratnam (2018) where they show low-level westerlies and 
southerlies toward India originated from the EEIO but they do not show any significant cross-equatorial 
flow in their positive IOD events composite. Over the Arabian Sea, the IODreg simulation has stronger 
south-westerly anomaly compared to IODglob and hence simulates excess rainfall (Figures 2a–2c). In June, 
the dry anomaly observed over India is related to low-level anomalous anticyclonic circulation over cen-
tral-east India and adjacent Bay of Bengal and to anomalous easterlies prevailing in the peninsular India 
(Figure 2d). Both circulation features reduced the monsoon flow toward India and hence contributed to 
the negative rainfall anomaly over India. IODglob realistically simulated both these anomalous circulation 
features (Figure 2e), whereas IODreg did not and it shows strong south-westerly flow reaching the Indian 
landmass (Figure 2f). In September 2019, observations show that there was a strong anomalous south-west-
erly flow toward Indian landmass and associated cyclonic circulation over central west India, contributing 
to the excess rainfall (Figure 2g). Both sensitivity experiments (Figures 2h and 2i) simulated anomalously 
strong south-westerly flow and anomalous cyclonic circulation over India, though they are not as strong as 
observed.
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Consistent with precipitation and low-level wind patterns, there is convergence in the upper troposphere 
over the Maritime Continent and EEIO in September when the IOD is at its peak (Figure 3b), but such 
convergence does not appear in June (Figure 3a) when the IOD is developing and there are still warm SST 
anomalies over the equatorial Pacific (Figure 1). In the IODglob experiment (Figure 3c) we see that the 
model responds strongly to these equatorial Pacific SST anomalies in June, causing strong upper-level diver-
gence over east equatorial Pacific and convergence over the Maritime Continent. The opposite circulation 
is seen at lower levels (see Figure S2 for the 850 hPa velocity potential and divergent winds) which causes 
low-level divergence extending from the Maritime Continent to the Bay of Bengal and Indian landmass, 
contributing to negative rainfall anomaly in June. In IODreg, where the model is forced with the 2019 SST 
anomaly only over the Indian Ocean, the model responds with upper-level (lower level) divergence (con-
vergence) over the Indian Ocean and over India (extending from Australia via WEIO to India; Figures 3e 
and S2), which would have contributed to a positive rainfall anomaly in June. The model simulated velocity 
potential anomaly explains the model simulated rainfall and its link with Indian Ocean and Pacific Ocean 
SST anomaly, and indicates that the response is more closely linked with the equatorial Pacific SST rather 
with the SST anomalies in the extratropical North Pacific which were also large in 2019. Both sensitivity 
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Figure 3.  (a and b) 200 hPa velocity potential (106 m2 s−1, shaded) and divergent wind (m s−1, vectors) anomalies in 2019 June and September, respectively, 
based on the reanalysis. (c), (d) and (e), (f) are the same as (a), (b) but for IODglob and IODreg experiments, respectively. Shaded velocity potential anomalies 
are significant at 90% level using a Student's t-test.

(a) (b)

(d)

(f)(e)

(c)
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experiments simulate upper-level divergence over EEIO region in September, although in IODglob it is 
stronger than in IODreg, and this explains the link between the Indian Ocean SST anomaly and the circu-
lation and rainfall anomalies.

4.  Conclusions
One of the strongest positive IOD events in the historical period occurred in 2019. The evolution of the 
2019 IOD was characterized by a cold anomaly over the EEIO which started strengthening from June and 
reached its peak in October, remaining strong until November. In the same year, the Indian summer mon-
soon season experienced peculiar behavior with weak rainfall during June (despite the IOD index being 
already in its positive phase). Then the monsoon gained its strength from July, ending with an anomalous 
wet September and contributing to above-normal seasonal rainfall.

With a suite of atmospheric GCM experiments we have been able to evidence the role of the IOD and of the 
SST anomalies elsewhere in the seasonal evolution of rainfall and circulation anomalies during the 2019 
summer monsoon. The anomalous SST gradient between the west and east equatorial Indian Ocean drives 
a dipole in equatorial precipitation anomalies and anomalous low-level circulation that would, in isolation, 
lead to a wetter than normal Indian summer monsoon across the monsoon season including June and 
September. However, when forcing the IGCM4 model with the global pattern of SST anomalies observed 
in 2019, the response changes, particularly in June. Although not considered to be an El Niño, the first half 
of 2019 did exhibit anomalously warm conditions in the central Pacific (visible in the Nino3.4 index) that 
dissipated by September. The model responds to this equatorial Pacific warmth with upper-level divergence 
over the equatorial Pacific and convergence over the Maritime Continent. This causes low-level divergence 
extending from the Maritime Continent to the Bay of Bengal and the Indian landmass, contributing to a 
negative rainfall anomaly there in June. By September, this response to remote forcing from the Pacific 
weakens (likely linked in part to the weakening of the Nino3.4 SST anomaly there), leaving the response 
to the Indian Ocean SST anomalies (linked to the very strong IOD) to dominate. This response arises from 
strong IOD-related low-level divergence over EEIO and convergence over the Indian landmass, contribut-
ing to excessive rainfall.

The similarity between the model simulations and observed/reanalysis data provides evidence that these 
mechanisms occurred in the real world in 2019, i.e., that there was a contrasting contribution from the 
Pacific and Indian Ocean SST anomalies to ISM rainfall. The tropical Pacific SST contributed to a drying 
tendency over India while the IOD contributed to anomalous wet conditions over India. The Pacific effect 
dominated in June, contributing to the dry anomalies observed, but the weakening Pacific SST anomalies 
and especially the dramatic strengthening of the IOD led to the latter dominating by September and having 
a significant contribution to the very wet September observed.

The observed June and September rainfall anomalies were more extreme than those simulated in these SST-
forced experiments, reinforcing the role that internal atmospheric variability plays in any particular month 
or season. Nevertheless, the results from this study help to understand the role of SST anomalies within and 
outside the Indian Ocean in affecting ISM rainfall intensity and seasonal evolution during extreme IOD 
events. This is important for improving seasonal predictions of Indian summer monsoon, and our results 
also highlight that, to predict the seasonal evolution of ISM rainfall, Pacific SST anomalies must be consid-
ered even when there is an extremely strong IOD. For example, Li et al. (2017) show that the majority of 
CMIP5 models simulate an unrealistic present-day IOD-ISMR correlation due to an overly strong control by 
ENSO and hence a positive IOD is associated with a reduction of ISM rainfall in the simulated present-day 
climate. Hence, coupled climate models need to improve their simulation of these type of linkages.

Data Availability Statement
The data used in this study can be downloaded from the following websites: ERSST (https://psl.noaa.gov/
data/gridded/data.noaa.ersst.v5.html); OISST (https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html); 
HadISST (https://www.metoffice.gov.uk/hadobs/hadisst/); GPCP (https://psl.noaa.gov/data/gridded/data.
gpcp.html); NCEP-DOE Reanalysis 2 (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html), 
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Nino3.4 (https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/); El Niño-Modoki (http://www.jamstec.go.
jp/virtualearth/general/en/index.html); Indian Monthly Rainfall Data (https://tropmet.res.in/static_pages.
php?page_id=53); The model used in this study is described in Joshi et al. (2015); https://gmd.copernicus.
org/articles/8/1157/2015/).
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