114 research outputs found

    BioTIME 2.0 : expanding and improving a database of biodiversity time series

    Get PDF
    Funding: H2020 European Research Council (Grant Number(s): GA 101044975, GA 101098020).Motivation: Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables: Included The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and Grain: Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and Grain: The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of Measurement: The database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Format: csv and. SQL.Peer reviewe

    BioTIME 2.0 : expanding and improving a database of biodiversity time series

    Get PDF
    Motivation. Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables Included. The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and Grain. Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and Grain. The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of Measurement. The database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Format. csv and. SQL

    BioTIME 2.0: Expanding and Improving a Database of Biodiversity Time Series

    Get PDF
    Motivation Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables Included The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and Grain Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and Grain The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of Measurement The database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Format csv and. SQL

    Cytokinesis in pollen mother cells. I. Tradescantia yirginiana

    No full text

    A cytochemical investigations of dry and germinating. Iris prseudoacorus seeds

    No full text
    The composition and distribution of storage substances such as proteins, lipids, carbohydrates and phosphates and also some enzymes in dry Iris pseudoacorus endosperm and their changes during germination were investigated with light microscope

    Characteristics of achenes in Potentilla collina group [Rosaceae]

    No full text
    Achenes morphology in taxa from Potentilla collina s.l. i.e., P. collina Wibel s.s., P. leucopolitana P.J. Müller, P. thyrsiflora Hülsen ex Zimmet., P. thyrsiflora var. isosepala Th. W., P. silesiaca Uechtr. And P. wimanniana Günther and Schummel was examined with stereoscope and scanning electron microscopy. Achenes of these taxa varied slightly in shape, size and colour, while marked differences among them appeared in the surface sculpture and in the dimensions of aril, dorsal ridge and ribs. SEM analyses allowed to distinguish two distinct morphological types of achenes. Type I - with ruminate sculpture and aggregates of some material, various in shape and size, at the surface of partly destroyed epidermal cells covering fruit wall in P. leucopolitana, P. wimanniana and P. thyrsiflora. Type II - with ruminate-reticulate sculpture due to well preserved epidermal cells in P. silesiaca and P. thyrsiflora var. isosepala. The obtained results have supported Błocki’s suggestion to treat P. thyrsiflora var. isosepala as a separate species named P. isosepala. However, similarities in the surface sculpture of achenes in some taxa of P. collina group did not facilitate their classification, therefore this feature may be a valuable taxonomical criterium only in combination with others
    corecore