974 research outputs found

    Fast Ground State Manipulation of Neutral Atoms in Microscopic Optical Traps

    Full text link
    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87^{87}Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with crosstalk on neighboring sites separated by 8μm8 \mu\rm m at the level of 10−310^{-3}. Ramsey spectroscopy is used to measure a dephasing time of 870μs870 \mu\rm s which is ≈\approx 5000 times longer than the time for a π/2\pi/2 pulse.Comment: 4 pages, 4 figure

    A Motion- and Sound-Activated, 3D-Printed, Chalcogenide-Based Triboelectric Nanogenerator

    Get PDF
    Cataloged from PDF version of article.A multilayered triboelectric nanogenerator (MULTENG) that can be actuated by acoustic waves, vibration of a moving car, and tapping motion is built using a 3D-printing technique. The MULTENG can generate an open-circuit voltage of up to 396 V and a short-circuit current of up to 1.62 mA, and can power 38 LEDs. The layers of the triboelectric generator are made of polyetherimide nanopillars and chalcogenide core-shell nanofibers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Fast ground state manipulation of neutral atoms in microscopic optical traps

    Get PDF
    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8  μm at the level of 10−3. Ramsey spectroscopy is used to measure a dephasing time of 870  μs, which is ≈5000  times longer than the time for a π/2 pulse

    Muscle co-activity tuning in Parkinsonian hand movement : disease-specific changes at behavioral and cerebral level

    Get PDF
    We investigated different degrees of muscle co-activity in simple hand movement at behavioral and cerebral level in healthy subjects and Parkinson’s disease (PD) patients. We compared 'singular' movements, dominated by the activity of one agonist muscle, to 'composite' movements, requiring conjoint activity of multiple muscles, in a center-out (right hand) step-tracking task. Behavioral parameters were obtained by EMG and kinematic recordings. fMRI was used to investigate differences in underlying brain activations between PD patients (N= 12) and healthy (age-matched) subjects (N= 18). In healthy subjects, composite movements recruited the striatum and cortical areas comprising bilaterally the supplementary motor area and premotor cortex, contralateral medial prefrontal cortex, primary motor cortex, primary visual cortex, and ipsilateral superior parietal cortex. Contrarily, the ipsilateral cerebellum was more involved in singular movements. This striking dichotomy between striatal and cortical recruitment versus cerebellar involvement may reflect the complementary roles of these areas in motor control, in which the basal ganglia are involved in movement selection and the cerebellum in movement optimization. Compared to healthy subjects, PD patients showed decreased activation of the striatum and cortical areas in composite movement, while performing worse at behavioral level. This implies that PD patients are especially impaired on tasks requiring highly tuned muscle co-activity. Singular movement, on the other hand, was characterized by a combination of increased activation of the ipsilateral parietal cortex and left cerebellum. As singular movement performance was only slightly compromised, we interpret this as a reflection of increased visuospatial processing, possibly as a compensational mechanism

    Two-dimensional array of microtraps with atomic shift register on a chip

    Get PDF
    Arrays of trapped atoms are the ideal starting point for developing registers comprising large numbers of physical qubits for storing and processing quantum information. One very promising approach involves neutral atom traps produced on microfabricated devices known as atom chips, as almost arbitrary trap configurations can be realised in a robust and compact package. Until now, however, atom chip experiments have focused on small systems incorporating single or only a few individual traps. Here we report experiments on a two-dimensional array of trapped ultracold atom clouds prepared using a simple magnetic-film atom chip. We are able to load atoms into hundreds of tightly confining and optically resolved array sites. We then cool the individual atom clouds in parallel to the critical temperature required for quantum degeneracy. Atoms are shuttled across the chip surface utilising the atom chip as an atomic shift register and local manipulation of atoms is implemented using a focused laser to rapidly empty individual traps.Comment: 6 pages, 4 figure

    NF-κB-mediated effects on behavior and cartilage pathology in a non-invasive loading model of post-traumatic osteoarthritis

    Get PDF
    OBJECTIVE: This study aimed to examine the temporal activation of NF-κB and its relationship to the development of pain-related sensitivity and behavioral changes in a non-invasive murine knee loading model of PTOA. METHOD: Following knee injury NF-κB activity was assessed longitudinally via in vivo imaging in FVB. Cg-Tg (HIV-EGFP,luc)8Tsb/J mice. Measures of pain-related sensitivity and behavior were also assessed longitudinally for 16 weeks. Additionally, we antagonized NF-κB signaling via intra-articular delivery of an IκB kinase two antagonist to understand how local NF-κB inhibition might alter disease progression. RESULTS: Following joint injury NF-κB signaling within the knee joint was transiently increased and peaked on day 3 with an estimated 1.35 p/s/cm CONCLUSION: These findings underscore the development of behavioral changes in this non-invasive loading model of PTOA and their relationships to NF-κB activation and pathology. They also highlight the potential chondroprotective effects of NF-κB inhibition shortly following joint injury despite limitations in preventing the long-term development of joint degeneration in this model of PTOA

    Laser Cooling of Optically Trapped Molecules

    Full text link
    Calcium monofluoride (CaF) molecules are loaded into an optical dipole trap (ODT) and subsequently laser cooled within the trap. Starting with magneto-optical trapping, we sub-Doppler cool CaF and then load 150(30)150(30) CaF molecules into an ODT. Enhanced loading by a factor of five is obtained when sub-Doppler cooling light and trapping light are on simultaneously. For trapped molecules, we directly observe efficient sub-Doppler cooling to a temperature of 60(5)60(5) μK\mu\text{K}. The trapped molecular density of 8(2)×1078(2)\times10^7 cm−3^{-3} is an order of magnitude greater than in the initial sub-Doppler cooled sample. The trap lifetime of 750(40) ms is dominated by background gas collisions.Comment: 5 pages, 5 figure

    Biological Evaluation and Phytochemical Profiling of Some Lichen Species

    Get PDF
    Lichens are a symbiotic relationship between a fungus and a photosynthetic partner. Chemical characterization and bioactive potentials (antiproliferative, antioxidant, and antibacterial) of five lichen species (Evernia prunastri, Platismatia glauca, Pseudevernia furfuracea, Ramalina fastigiata, and Ramalina farinacea) were assessed. Five lichen metabolites (usnic acid, atranorin, stictic acid, evernic acid, and fumarprotocetraric acid) were analyzed by HPLC-DAD. E. prunastri was noteworthy evernic acid source. Antiproliferative activity was evaluated using human breast adenocarcinoma (MCF-7) and human hepatocellular carcinoma (HepG2/C3A) cell lines. The strongest activity was observed for P. glauca against HepG2/C3A, while the only lichen species that induced cytotoxicity against MCF-7 cell line was P. furfuracea. The highest antioxidant activity was also obtained with P. furfuracea. E. prunastri and R. farinaceae had the highest phenolic and flavonoid contents, respectively. Antibacterial activities of the extracts were determined against ten pathogenic bacteria. The most effective antibacterial agent was methanol extract of R. fastigiata. Our findings have revealed the pharmaceutical potentials of tested lichen species

    Compartmentalization of androgen receptors at endogenous genes in living cells

    Get PDF
    A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.</p
    • …
    corecore