5,068 research outputs found

    Criterios de idoneidad y argumentación en la evaluación de los cambios dentro de una comunidad de profesores de matemática

    Get PDF
    La investigación que se presenta se enmarca dentro del enfoque Ontosemiótico de la Cognición e Instrucción Matemática y tiene como objetivo investigar el papel que juegan los criterios de idoneidad en la argumentación que hace el profesorado cuando valora la incorporación de situaciones contextualizadas al proceso de enseñanza y aprendizaje de las funciones. La investigación se divide en dos fases claramente diferenciadas, La primera tiene como objetivo conseguir la problematización de una práctica que no era considerada como tal en la institución (la ausencia de problemas contextualizados) y la segunda la reflexión para el cambio a partir de dicha problematización. Se concluye que los “criterios de idoneidad” son herramientas que pueden ser muy útiles para organizar y analizar las prácticas discursivas del profesorado cuando valora la posibilidad de incorporar cambios al proceso de instrucción

    Nonlinear r-modes in Rapidly Rotating Relativistic Stars

    Full text link
    The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications (including the emission of detectable gravitational radiation, the explanation of the initial spins of young neutron stars and the spin-distribution of millisecond pulsars and the explanation of one type of gamma-ray bursts), provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3-D general-relativistic hydrodynamical evolutions. Our numerical simulations show that (1) on dynamical timescales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one -- unless nonlinear saturation occurs on longer timescales, the maximum r-mode amplitude is of order unity (i.e., the velocity perturbation is of the same order as the rotational velocity at the equator). An absolute upper limit on the amplitude (relevant, perhaps, for the most rapidly rotating stars) is set by causality. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes and possible associated continuous parts were not identified in our simulations. (3) In addition, the kinematical drift associated with r-modes, recently found by Rezzolla, Lamb and Shapiro (2000), appears to be present in our simulations, but an unambiguous confirmation requires more precise initial data. We discuss the implications of our findings for the detectability of gravitational waves from the r-mode instability.Comment: 4 pages, 4 eps figures, accepted in Physical Review Letter

    Advances in Old-Fashioned Heterotic String Model Building

    Get PDF
    I review findings of various research groups regarding perturbative heterotic string model building in the last 12 months. Attention is given to recent studies of extra U(1)'s and local discrete symmetries (LDS's) in generic string models. Issues covered include the role of U(1)'s and LDS's in limiting proton decay, developments in classification of models containing anomalous U(1), and possible complications resulting from kinetic mixing between observable and hidden sector U(1)'s. Additionally, recent string-derived and string-inspired models are briefly reviewed. Talk Presented at SUSY '97.Comment: Talk presented at SUSY'97. Latex w/ espcrc2.sty, 10 pages, reference corrections and update

    Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods

    Get PDF
    Measurements of optical turbulence time series data using unattended instruments over long time intervals inevitably lead to data drop-outs or degraded signals. We present a comparison of methods using both Principal Component Analysis, which is also known as the Karhunen--Loeve decomposition, and ARIMA that seek to correct for these event-induced and mechanically-induced signal drop-outs and degradations. We report on the quality of the correction by examining the Intrinsic Mode Functions generated by Empirical Mode Decomposition. The data studied are optical turbulence parameter time series from a commercial long path length optical anemometer/scintillometer, measured over several hundred metres in outdoor environments.Comment: 8 pages, 9 figures, submitted to ICOLAD 2007, City University, London, U

    Massive Neutrinos and (Heterotic) String Theory

    Full text link
    String theories in principle address the origin and values of the quark and lepton masses. Perhaps the small values of neutrino masses could be explained generically in string theory even if it is more difficult to calculate individual values, or perhaps some string constructions could be favored by generating small neutrino masses. We examine this issue in the context of the well-known three-family standard-like Z_3 heterotic orbifolds, where the theory is well enough known to construct the corresponding operators allowed by string selection rules, and analyze the D- and F-flatness conditions. Surprisingly, we find that a simple see-saw mechanism does not arise. It is not clear whether this is a property of this construction, or of orbifolds more generally, or of string theory itself. Extended see-saw mechanisms may be allowed; more analysis will be needed to settle that issue. We briefly speculate on their form if allowed and on the possibility of alternatives, such as small Dirac masses and triplet see-saws. The smallness of neutrino masses may be a powerful probe of string constructions in general. We also find further evidence that there are only 20 inequivalent models in this class, which affects the counting of string vacua.Comment: 18 pages in RevTeX format. Single-column postscript version available at http://sage.hep.upenn.edu/~bnelson/singpre.p

    Gravitational waves from the Papaloizou-Pringle instability in black hole-torus systems

    Full text link
    Black hole (BH)--torus systems are promising candidates for the central engine of gamma-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an m=1m=1 nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a timescale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observable by forthcoming ground-based and spacecraft detectors.Comment: 4 pages, 4 figure, to be published in PR

    Relativistic Hydrodynamics around Black Holes and Horizon Adapted Coordinate Systems

    Get PDF
    Despite the fact that the Schwarzschild and Kerr solutions for the Einstein equations, when written in standard Schwarzschild and Boyer-Lindquist coordinates, present coordinate singularities, all numerical studies of accretion flows onto collapsed objects have been widely using them over the years. This approach introduces conceptual and practical complications in places where a smooth solution should be guaranteed, i.e., at the gravitational radius. In the present paper, we propose an alternative way of solving the general relativistic hydrodynamic equations in background (fixed) black hole spacetimes. We identify classes of coordinates in which the (possibly rotating) black hole metric is free of coordinate singularities at the horizon, independent of time, and admits a spacelike decomposition. In the spherically symmetric, non-rotating case, we re-derive exact solutions for dust and perfect fluid accretion in Eddington-Finkelstein coordinates, and compare with numerical hydrodynamic integrations. We perform representative axisymmetric computations. These demonstrations suggest that the use of those coordinate systems carries significant improvements over the standard approach, especially for higher dimensional studies.Comment: 10 pages, 4 postscript figures, accepted for publication in Phys. Rev.

    Scalar field induced oscillations of neutron stars and gravitational collapse

    Full text link
    We study the interaction of massless scalar fields with self-gravitating neutron stars by means of fully dynamic numerical simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical symmetry and the neutron stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of isolated neutron stars is very effectively performed within the characteristic formulation of general relativity, in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find, in particular, that depending on the compactness of the neutron star model, the scalar wave forces the neutron star either to oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical timescale. The radiative signal, read off at future null infinity, shows quasi-normal oscillations before the setting of a late time power-law tail.Comment: 12 pages, 13 figures, submitted to Phys. Rev.

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.
    corecore