164 research outputs found

    The discursive hegemony of Trump’s Jacksonian populism: Race, class, and gender in constructions and contestations of US national identity, 2016–2018

    Get PDF
    Contributing to burgeoning studies of populism, this article conceptualises and contextualises Trump’s language as ‘Jacksonian populism’. We explore how this style of populist discourse influenced political debates before and after Trump’s election. Ours is the first article to analyse opposition and media responses to Trump’s construction of ‘real America’ as that of a Jacksonian, White, and male working class. To do so, the article analyses 1165 texts, from the government, opposition, newspapers, television coverage, and social media. In addition to locating Trump’s reification of a mythologised White working class within a broader Jacksonian tradition, we find that the Democratic opposition and mainstream media initially reproduced this construction, furthering Trump’s cause. Even where discursive challenges were subsequently developed, they often served to reproduce a distinct – and hitherto unspoken for – White (male) working-class America. In short, early resistance actively reinforced Trump’s discursive hegemony, which centred on reclaiming the primacy of working, White America in the national identity

    Manipulation of body fat composition with sterculic acid can inhibit mammary carcinomas in vivo.

    Get PDF
    Sterculic acid, a delta-9-desaturase inhibitor, administered to rats caused a rise in the stearic:oleic acid ratio of total lipids in peripheral red cells, serum and liver (P less than 0.001). As a reduction in the stearic:oleic acid ratio has been described in cancer cells, we investigated the effect of sterculic acid on tumour growth. Female F344 rats were injected subcutaneously with two different doses of sterculic acid for 4 weeks prior to, and 4 weeks following, implantation of a nitrosomethylurea-induced mammary tumour. Tumour growth was inhibited equally by the two doses of sterculic acid (P less than 0.001). A rise in the stearic:oleic acid ratio of tumours was observed in rats treated for only 16 days with sterculic acid. Manipulation of the tissue stearic:oleic acid ratio inhibits transplanted mammary tumour growth in rats

    Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice

    Get PDF
    INTRODUCTION: Obesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet. METHODS: Female C57BL/6J mice were fed either a 10% kcal fat or a 45% kcal fat diet from 9 to 54 weeks of age. Longitudinal changes in musculoskeletal function and inflammation were compared with endpoint neurobehavioral and osteoarthritic disease states. Bivariate and multivariate analyses were conducted to determine independent associations with diet, percentage body fat, and knee osteoarthritis severity. We also examined healthy porcine cartilage explants treated with physiologic doses of leptin, alone or in combination with IL-1α and palmitic and oleic fatty acids, to determine the effects of leptin on cartilage extracellular matrix homeostasis. RESULTS: High susceptibility to dietary obesity was associated with increased osteoarthritic changes in the knee and impaired musculoskeletal force generation and motor function compared with controls. A high-fat diet also induced symptomatic characteristics of osteoarthritis, including hyperalgesia and anxiety-like behaviors. Controlling for the effects of diet and percentage body fat with a multivariate model revealed a significant association between knee osteoarthritis severity and serum levels of leptin, adiponectin, and IL-1α. Physiologic doses of leptin, in the presence or absence of IL-1α and fatty acids, did not substantially alter extracellular matrix homeostasis in healthy cartilage explants. CONCLUSIONS: These results indicate that diet-induced obesity increases the risk of symptomatic features of osteoarthritis through changes in musculoskeletal function and pain-related behaviors. Furthermore, the independent association of systemic adipokine levels with knee osteoarthritis severity supports a role for adipose-associated inflammation in the molecular pathogenesis of obesity-induced osteoarthritis. Physiologic levels of leptin do not alter extracellular matrix homeostasis in healthy cartilage, suggesting that leptin may be a secondary mediator of osteoarthritis pathogenesis

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics

    Resonant structure of space-time of early universe

    Full text link
    A new fully quantum method describing penetration of packet from internal well outside with its tunneling through the barrier of arbitrary shape used in problems of quantum cosmology, is presented. The method allows to determine amplitudes of wave function, penetrability TbarT_{\rm bar} and reflection RbarR_{\rm bar} relatively the barrier (accuracy of the method: Tbar+Rbar1<11015|T_{\rm bar}+R_{\rm bar}-1| < 1 \cdot 10^{-15}), coefficient of penetration (i.e. probability of the packet to penetrate from the internal well outside with its tunneling), coefficient of oscillations (describing oscillating behavior of the packet inside the internal well). Using the method, evolution of universe in the closed Friedmann--Robertson--Walker model with quantization in presence of positive cosmological constant, radiation and component of generalize Chaplygin gas is studied. It is established (for the first time): (1) oscillating dependence of the penetrability on localization of start of the packet; (2) presence of resonant values of energy of radiation EradE_{\rm rad}, at which the coefficient of penetration increases strongly. From analysis of these results it follows: (1) necessity to introduce initial condition into both non-stationary, and stationary quantum models; (2) presence of some definite values for the scale factor aa, where start of expansion of universe is the most probable; (3) during expansion of universe in the initial stage its radius is changed not continuously, but passes consequently through definite discrete values and tends to continuous spectrum in latter time.Comment: 18 pages, 14 figures, 4 table

    Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanical strain plays a significant role in the regulation of bone matrix turnover, which is mediated in part by matrix metalloproteinase (MMP)-13 and tissue inhibitors of matrix metalloproteinase (TIMP)-1. However, little is known about the correlation between mechanical strain and osteoblastic cell activities, including extracellular matrix (ECM) metabolism. Herein, we determined the effect of different magnitudes of cyclic tensile strain (0%, 6%, 12%, and 18%) on MMP-13 and TIMP-1 mRNA and protein expression in MC3T3-E1 osteoblasts. Furthermore, we employed specific inhibitors to examine the role of distinct signal transduction pathways known to mediate cellular responses to mechanical strain.</p> <p>Results</p> <p>We identified a magnitude-dependent increase in MMP-13 and TIMP-1 mRNA and protein levels in response to mechanical strains corresponding to 6%, 12%, and 18% elongation. The strain-induced increases in MMP-13 and TIMP-1 mRNA expression were inhibited by PD098059 and cycloheximide, respectively.</p> <p>Conclusions</p> <p>Our results suggest a mechanism for the regulation of bone matrix metabolism mediated by the differential expression of MMP-13 and TIMP-1 in response to increasing magnitudes of mechanical strain.</p

    Tissue specific characteristics of cells isolated from human and rat tendons and ligaments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tendon and ligament injuries are common and costly in terms of surgery and rehabilitation. This might be improved by using tissue engineered constructs to accelerate the repair process; a method used successfully for skin wound healing and cartilage repair. Progress in this field has however been limited; possibly due to an over-simplistic choice of donor cell. For tissue engineering purposes it is often assumed that all tendon and ligament cells are similar despite their differing roles and biomechanics. To clarify this, we have characterised cells from various tendons and ligaments of human and rat origin in terms of proliferation, response to dexamethasone and cell surface marker expression.</p> <p>Methods</p> <p>Cells isolated from tendons by collagenase digestion were plated out in DMEM containing 10% fetal calf serum, penicillin/streptomycin and ultraglutamine. Cell number and collagen accumulation were by determined methylene blue and Sirius red staining respectively. Expression of cell surface markers was established by flow cytometry.</p> <p>Results</p> <p>In the CFU-f assay, human PT-derived cells produced more and bigger colonies suggesting the presence of more progenitor cells with a higher proliferative capacity. Dexamethasone had no effect on colony number in ACL or PT cells but 10 nM dexamethasone increased colony size in ACL cultures whereas higher concentrations decreased colony size in both ACL and PT cultures. In secondary subcultures, dexamethasone had no significant effect on PT cultures whereas a stimulation was seen at low concentrations in the ACL cultures and an inhibition at higher concentrations. Collagen accumulation was inhibited with increasing doses in both ACL and PT cultures. This differential response was also seen in rat-derived cells with similar differences being seen between Achilles, Patellar and tail tendon cells. Cell surface marker expression was also source dependent; CD90 was expressed at higher levels by PT cells and in both humans and rats whereas D7fib was expressed at lower levels by PT cells in humans.</p> <p>Conclusion</p> <p>These data show that tendon & ligament cells from different sources possess intrinsic differences in terms of their growth, dexamethasone responsiveness and cell surface marker expression. This suggests that for tissue engineering purposes the cell source must be carefully considered to maximise their efficacy.</p
    corecore