1,656 research outputs found
Measurement of Birefringence of Low-Loss, High-Reflectance Coating of M-Axis Sapphire
The birefringence of a low-loss, high-reflectance coating applied to an 8-cm-diameter sapphire crystal grown in the m-axis direction has been mapped. By monitoring the transmission of a high-finesse Fabry-Perot cavity as a function of the polarization of the input light, we find an upper limit for the magnitude of the birefringence of 2.5 x 10^-4 rad and an upper limit in the variation in direction of the birefringence of 10 deg. These values are sufficiently small to allow consideration of m-axis sapphire as a substrate material for the optics of the advanced detector at the Laser Interferometer Gravitational Wave Observatory
Longitudinal dependence of middle and low latitude zonal plasma drifts measured by DE-2
We used ion drift observations from the DE-2 satellite to study for the first time the longitudinal variations of middle and low latitude <i>F</i> region zonal plasma drifts during quiet and disturbed conditions. The quiet-time middle latitude drifts are predominantly westward; the low latitude drifts are westward during the day and eastward at night. The daytime quiet-time drifts do not change much with longitude; the nighttime drifts have strong season dependent longitudinal variations. In the dusk-premidnight period, the equinoctial middle latitude westward drifts are smallest in the European sector and the low latitude eastward drifts are largest in the American-Pacific sector. The longitudinal variations of the late night-early morning drifts during June and December solstice are anti-correlated. During geomagnetically active times, there are large westward perturbation drifts in the late afternoon-early night sector at upper middle latitudes, and in the midnight sector at low latitudes. The largest westward disturbed drifts during equinox occur in European sector, and the smallest in the Pacific region. These results suggest that during equinox SAPS events occur most often at European longitudes. The low latitude perturbation drifts do not show significant longitudina
Thermo-optic noise in coated mirrors for high-precision optical measurements
Thermal fluctuations in the coatings used to make high-reflectors are
becoming significant noise sources in precision optical measurements and are
particularly relevant to advanced gravitational wave detectors. There are two
recognized sources of coating thermal noise, mechanical loss and thermal
dissipation. Thermal dissipation causes thermal fluctuations in the coating
which produce noise via the thermo-elastic and thermo-refractive mechanisms. We
treat these mechanisms coherently, give a correction for finite coating
thickness, and evaluate the implications for Advanced LIGO
Mathematical models of magnetospheric convection and its coupling to the ionosphere
Mathematical models of magnetospheric convection and its coupling to ionospher
Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror
We calculate the thermal noise in half-infinite mirrors containing a layer of
arbitrary thickness and depth made of excessively lossy material but with the
same elastic material properties as the substrate. For the special case of a
thin lossy layer on the surface of the mirror, the excess noise scales as the
ratio of the coating loss to the substrate loss and as the ratio of the coating
thickness to the laser beam spot size. Assuming a silica substrate with a loss
function of 3x10-8 the coating loss must be less than 3x10-5 for a 6 cm spot
size and a 7 micrometers thick coating to avoid increasing the spectral density
of displacement noise by more than 10%. A similar number is obtained for
sapphire test masses.Comment: Passed LSC (internal) review. Submitted to Phys. Rev. D. (5/2001)
Replacement: Minor typo in Eq. 17 correcte
Nonlinear interaction between two heralded single photons
Harnessing nonlinearities strong enough to allow two single photons to
interact with one another is not only a fascinating challenge but is central to
numerous advanced applications in quantum information science. Currently, all
known approaches are extremely challenging although a few have led to
experimental realisations with attenuated classical laser light. This has
included cross-phase modulation with weak classical light in atomic ensembles
and optical fibres, converting incident laser light into a non-classical stream
of photon or Rydberg blockades as well as all-optical switches with attenuated
classical light in various atomic systems. Here we report the observation of a
nonlinear parametric interaction between two true single photons. Single
photons are initially generated by heralding one photon from each of two
independent spontaneous parametric downconversion sources. The two heralded
single photons are subsequently combined in a nonlinear waveguide where they
are converted into a single photon with a higher energy. Our approach
highlights the potential for quantum nonlinear optics with integrated devices,
and as the photons are at telecom wavelengths, it is well adapted to
applications in quantum communication.Comment: 4 pages, 4 figure
Investigating the medium range order in amorphous Ta<sub>2</sub>O<sub>5</sub> coatings
Ion-beam sputtered amorphous heavy metal oxides, such as Ta2O5, are widely used as the high refractive index layer of highly reflective dielectric coatings. Such coatings are used in the ground based Laser Interferometer Gravitational-wave Observatory (LIGO), in which mechanical loss, directly related to Brownian thermal noise, from the coatings forms an important limit to the sensitivity of the LIGO detector. It has previously been shown that heat-treatment and TiO2 doping of amorphous Ta2O5 coatings causes significant changes to the levels of mechanical loss measured and is thought to result from changes in the atomic structure. This work aims to find ways to reduce the levels of mechanical loss in the coatings by understanding the atomic structure properties that are responsible for it, and thus helping to increase the LIGO detector sensitivity. Using a combination of Reduced Density Functions (RDFs) from electron diffraction and Fluctuation Electron Microscopy (FEM), we probe the medium range order (in the 2-3 nm range) of these amorphous coatings
Quantum Zeno effect in a probed downconversion process
The distorsion of a spontaneous downconvertion process caused by an auxiliary
mode coupled to the idler wave is analyzed. In general, a strong coupling with
the auxiliary mode tends to hinder the downconversion in the nonlinear medium.
On the other hand, provided that the evolution is disturbed by the presence of
a phase mismatch, the coupling may increase the speed of downconversion. These
effects are interpreted as being manifestations of quantum Zeno or anti-Zeno
effects, respectively, and they are understood by using the dressed modes
picture of the device. The possibility of using the coupling as a nontrivial
phase--matching technique is pointed out.Comment: 11 pages, 4 figure
Generating Entangled Two-Photon States with Coincident Frequencies
It is shown that parametric downconversion, with a short-duration pump pulse
and a long nonlinear crystal that is appropriately phase matched, can produce a
frequency-entangled biphoton state whose individual photons are coincident in
frequency. Quantum interference experiments which distinguish this state from
the familiar time-coincident biphoton state are described.Comment: Revised version (a typo was corrected) as published on PR
- …
