175 research outputs found

    Ferroelectricity from spin supercurrents in LiCuVO4

    Full text link
    We have studied the magnetic structure of the ferroelectric frustrated spin-1/2 chain material LiCuVO4 in applied electric and magnetic fields using polarized neutrons. A symmetry and mean-field analysis of the data rules out the presence of static Dzyaloshinskii-Moriya interaction, while exchange striction is shown to be negligible by our specific-heat measurements. The experimentally observed magnetoelectric coupling is in excellent agreement with the predictions of a purely electronic mechanism based on spin supercurrents.Comment: 4 pages, 3 figures, final versio

    Magnetic-field enhanced aniferromagnetism in non-centrosymmetric heavy-fermion superconductor CePt3_3Si

    Full text link
    The effect of magnetic field on the static and dynamic spin correlations in the non-centrosymmetric heavy-fermion superconductor CePt3_3Si was investigated by neutron scattering. The application of a magnetic field B increases the antiferromagnetic (AFM) peak intensity. This increase depends strongly on the field direction: for B{\parallel}[0 0 1] the intensity increases by a factor of 4.6 at a field of 6.6 T, which corresponds to more than a doubling of the AFM moment, while the moment increases by only 10 % for B{\parallel}[1 0 0] at 5 T. This is in strong contrast to the inelastic response near the antiferromagnetic ordering vector, where no marked field variations are observed for B{\parallel}[0 0 1] up to 3.8 T. The results reveal that the AFM state in CePt3_3Si, which coexists with superconductivity, is distinctly different from other unconventional superconductors.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.

    Low energy spin fluctuations in the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}

    Full text link
    We report inelastic neutron scattering measurements performed on a single crystal of the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}, which is at the borderline between an antiferromagnetically ordered and a paramagnetic ground state. Intensity maps as a function of wavevector and energy (0.1<E<1.20.1<E<1.2 meV) were obtained at temperatures T=0.1T=0.1 and 2 K, using the time-of-flight spectrometer IRIS. An unexpected saturation of the relaxation rate and static susceptibility of the spin fluctuations is found at low temperatures.Comment: 2 pages, 2 figures, SCES'04 Proceeding

    Vesignieite: a S=12S = \frac{1}{2} kagome antiferromagnet with dominant third-neighbor exchange

    Get PDF
    The spin-12\frac{1}{2} kagome antiferromagnet is an archetypal frustrated system predicted to host a variety of exotic magnetic states. We show using neutron scattering measurements that deuterated vesignieite BaCu3_{3}V2_{2}O8_{8}(OD)2_{2}, a fully stoichiometric S=1/2S=1/2 kagome magnet with <<1% lattice distortion, orders magnetically at TN=9T_{\mathrm{N}}=9K into a multi-k coplanar variant of the predicted triple-k octahedral structure. We find this structure is stabilized by a dominant antiferromagnetic 3rd^{\mathrm{rd}}-neighbor exchange J3J_3 with minor 1st^{\mathrm{st}}- or 2nd^{\mathrm{nd}}--neighbour exchange. The spin-wave spectrum is well described by a J3J_3-only model including a tiny symmetric exchange anisotropy

    Evidence of a bond-nematic phase in LiCuVO4

    Full text link
    Polarized and unpolarized neutron scattering experiments on the frustrated ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at HQ of 8 Tesla is driven by quadrupolar fluctuations and that dipolar correlations are short-range with moments parallel to the applied magnetic field in the high-field phase. Heat-capacity measurements evidence a phase transition into this high-field phase, with an anomaly clearly different from that at low magnetic fields. Our experimental data are consistent with a picture where the ground state above HQ has a next-nearest neighbour bond-nematic order along the chains with a fluid-like coherence between weakly coupled chains.Comment: 5 pages, 4 figures. To appear in Phys. Rev. Let

    Low-energy magnetic response of the noncentrosymmetric heavy-fermion superconductor CePt3Si studied via inelastic neutron scattering

    Full text link
    The low-energy magnetic excitations of the noncentrosymmetric heavy-fermion superconductor CePt3Si have been measured with inelastic neutron scattering on a single crystal. Kondo-type spin fluctuations with an anisotropic wave vector dependence are observed in the paramagnetic state. These fluctuations do not survive in the antiferromagnetically ordered state below TN=2.2 K but are replaced by damped spin waves, whose dispersion is much stronger along the c-axis than in other directions. No change is observed in the excitation spectrum or the magnetic order as the system enters the superconducting state below Tc=0.7 K.Comment: Revised version: 8 pages, 7 figure

    Superfluid 4He dynamics beyond quasiparticle excitations

    Get PDF
    The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a Dynamic Many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles.Comment: 5 pages, 3 figure
    corecore