113,615 research outputs found
Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive
Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed
Phase Transition in the ABC Model
Recent studies have shown that one-dimensional driven systems can exhibit
phase separation even if the dynamics is governed by local rules. The ABC
model, which comprises three particle species that diffuse asymmetrically
around a ring, shows anomalous coarsening into a phase separated steady state.
In the limiting case in which the dynamics is symmetric and the parameter
describing the asymmetry tends to one, no phase separation occurs and the
steady state of the system is disordered. In the present work we consider the
weak asymmetry regime where is the system size and
study how the disordered state is approached. In the case of equal densities,
we find that the system exhibits a second order phase transition at some
nonzero .
The value of and the optimal profiles can be
obtained by writing the exact large deviation functional. For nonequal
densities, we write down mean field equations and analyze some of their
predictions.Comment: 18 pages, 3 figure
WASH coalition building guidelines
The Water Supply and Sanitation Collaborative Council (WSSCC) is an international membership organisation that has worked, since 1990, to achieve sustainable water
supply and sanitation for all people, through enhancing collaboration among sector agencies and professionals.
As part of its activities within two of its programme areas – Networking & Knowledge Management, and Advocacy & Communications – WSSCC encourages the development of national water supply, sanitation and hygiene (WASH) Coalitions.
The role of WASH Coalitions ranges from information sharing to the advocacy of specific policy changes, but they universally address a felt need for improved
systematic communication, collaboration and joint action among the sector players in a certain country. As a vehicle for awareness raising and advocacy, most national
WASH Coalitions have developed national WASH Campaigns. A special role is given to the National Coordinators, who are expected to maintain the links with the WSSCC Secretariat, exercise quality control and practise a degree of coordination and facilitation of the coalition.
However, coalitions, like partnerships, are complicated organisms and some of the existing WASH Coalitions have had only limited impact and varying degrees of success. This is partly due to the complexity of building a successful coalition that responds to the specific needs of the country in which it is created, and partly due to
the undefined or open mandate of the WASH Coalitions, resulting in a lack of clarity about what they are intended to do
Deep Q-Learning for Self-Organizing Networks Fault Management and Radio Performance Improvement
We propose an algorithm to automate fault management in an outdoor cellular
network using deep reinforcement learning (RL) against wireless impairments.
This algorithm enables the cellular network cluster to self-heal by allowing RL
to learn how to improve the downlink signal to interference plus noise ratio
through exploration and exploitation of various alarm corrective actions. The
main contributions of this paper are to 1) introduce a deep RL-based fault
handling algorithm which self-organizing networks can implement in a polynomial
runtime and 2) show that this fault management method can improve the radio
link performance in a realistic network setup. Simulation results show that our
proposed algorithm learns an action sequence to clear alarms and improve the
performance in the cellular cluster better than existing algorithms, even
against the randomness of the network fault occurrences and user movements.Comment: (c) 2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other work
Effects of Confinement on Critical Adsorption: Absence of Critical Depletion for Fluids in Slit Pores
The adsorption of a near-critical fluid confined in a slit pore is
investigated by means of density functional theory and by Monte Carlo
simulation for a Lennard-Jones fluid. Our work was stimulated by recent
experiments for SF_6 adsorbed in a mesoporous glass which showed the striking
phenomenon of critical depletion, i.e. the adsorption excess "Gamma" first
increases but then decreases very rapidly to negative values as the bulk
critical temperature T_c is approached from above along near-critical
isochores. By contrast, our density functional and simulation results, for a
range of strongly attractive wall-fluid potentials, show Gamma monotonically
increasing and eventually saturating as the temperature is lowered towards T_c
along both the critical (rho=rho_c) and sub-critical isochores (rho<\rho_c).
Such behaviour results from the increasingly slow decay of the density profile
away from the walls, into the middle of the slit, as T->T_c. For rho < rho_c we
find that in the fluid the effective bulk field, which is negative and which
favours desorption, is insufficient to dominate the effects of the surface
fields which favour adsorption. We compare this situation with earlier results
for the lattice gas model with a constant (negative) bulk field where critical
depletion was found. Qualitatively different behaviour of the density profiles
and adsorption is found in simulations for intermediate and weakly attractive
wall-fluid potentials but in no case do we observe the critical depletion found
in experiments. We conclude that the latter cannot be accounted for by a single
pore model.Comment: 21 pages Revtex. Submitted to Phys. Rev.
Condensation Transitions in Two Species Zero-Range Process
We study condensation transitions in the steady state of a zero-range process
with two species of particles. The steady state is exactly soluble -- it is
given by a factorised form provided the dynamics satisfy certain constraints --
and we exploit this to derive the phase diagram for a quite general choice of
dynamics. This phase diagram contains a variety of new mechanisms of condensate
formation, and a novel phase in which the condensate of one of the particle
species is sustained by a `weak' condensate of particles of the other species.
We also demonstrate how a single particle of one of the species (which plays
the role of a defect particle) can induce Bose-Einstein condensation above a
critical density of particles of the other species.Comment: 17 pages, 4 Postscript figure
Database Analysis to Support Nutrient Criteria Development (Phase I)
The intent of this publication of the Arkansas Water Resources Center is to provide a location whereby a final report on water research to a funding agency can be archived. The Texas Commission on Environmental Quality (TCEQ) contracted with University of Arkansas researchers for a multiple year project titled “Database Analysis to Support Nutrient Criteria Development”. This publication covers the first of three phases of that project and has maintained the original format of the report as submitted to TCEQ. This report can be cited either as an AWRC publication (see below) or directly as the final report to TCEQ
- …
