We propose an algorithm to automate fault management in an outdoor cellular
network using deep reinforcement learning (RL) against wireless impairments.
This algorithm enables the cellular network cluster to self-heal by allowing RL
to learn how to improve the downlink signal to interference plus noise ratio
through exploration and exploitation of various alarm corrective actions. The
main contributions of this paper are to 1) introduce a deep RL-based fault
handling algorithm which self-organizing networks can implement in a polynomial
runtime and 2) show that this fault management method can improve the radio
link performance in a realistic network setup. Simulation results show that our
proposed algorithm learns an action sequence to clear alarms and improve the
performance in the cellular cluster better than existing algorithms, even
against the randomness of the network fault occurrences and user movements.Comment: (c) 2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other work