102 research outputs found

    Multi-decadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years

    Get PDF
    Antarctic sea ice has paradoxically become more extensive over the past four decades despite a warming climate. The regional expression of this trend has been linked to changes in vertical redistribution of ocean heat and large-scale wind-field shifts. However, the short length of modern observations has hindered attempts to attribute this trend to anthropogenic forcing or natural variability. Here, we present two new decadal-resolution records of sea ice and sea surface temperatures that document pervasive regional climate heterogeneity in Indian Antarctic sea-ice cover over the last 2,000 years. Data assimilation of our marine records in a climate model suggests that the reconstructed dichotomous regional conditions were driven by the multi-decadal variability of the El Niño Southern Oscillation and Southern Annular Mode (SAM). For example, during an El Niño/SAM– combination, the northward sea-ice transport was reduced while heat advection from the subtropics to the Southern Ocean increased, which resulted in reduced sea-ice extent in the Indian sector as sea ice was compacted along the Antarctic coast. Our results therefore indicate that natural variability is large in the Southern Ocean and suggest that it has played a crucial role in the recent sea-ice trends and their decadal variability in this region.This research was funded by the ERC StG ICEPROXY project (203441), the ANR CLIMICE project, FP7 Past4Future project (243908), the RCN OCTEL project (248776/ E10), the Belgian Research Action through Interdisciplinary Networks Mass2Ant project (BR/165/A2/Mass2Ant), the JSPS KAKENHI (grants 23244102 and 17H06318), the Royal Society Te Apārangi Marsden Fund (MFP-VUW1808) and the MBIE NZ Antarctic Science Platform (ANTA1801). It also benefited from the ESF PolarClimate HOLOCLIP project. D.S. benefited from the Blue-Action project (European Union’s Horizon 2020 Research and Innovation Program, grant number: 727852) and the French LEFE-IMAGO programme. Hole U1357B samples and data were provided by the International Ocean Discovery Program (IODP)

    Deglacial and Holocene sea-ice and climate dynamics in the Bransfield Strait, northern Antarctic Peninsula

    Get PDF
    The reconstruction of past sea-ice distribution in the Southern Ocean is crucial for an improved understanding of ice-ocean-Atmosphere feedbacks and the evaluation of Earth system and Antarctic ice sheet models. The Antarctic Peninsula (AP) has been experiencing a warming since the start of regular monitoring of the atmospheric temperature in the 1950s. The associated decrease in sea-ice cover contrasts the trend of growing sea-ice extent in East Antarctica. To reveal the long-Term sea-ice history at the northern Antarctic Peninsula (NAP) under changing climate conditions, we examined a marine sediment core from the eastern basin of the Bransfield Strait covering the last Deglacial and the Holocene. For sea-ice reconstructions, we focused on the specific sea-ice biomarker lipid IPSO25, a highly branched isoprenoid (HBI), and sea-ice diatoms, whereas a phytoplankton-derived HBI triene (C25:3) and warmer open-ocean diatom assemblages reflect predominantly ice-free conditions. We further reconstruct ocean temperatures using glycerol dialkyl glycerol tetraethers (GDGTs) and diatom assemblages and compare our sea-ice and temperature records with published marine sediment and ice core data. A maximum ice cover is observed during the Antarctic Cold Reversal 13ĝ€¯800-13ĝ€¯000 years before present (13.8-13ĝ€¯ka), while seasonally ice-free conditions permitting (summer) phytoplankton productivity are reconstructed for the late Deglacial and the Early Holocene from 13 to 8.3ĝ€¯ka. An overall decreasing sea-ice trend throughout the Middle Holocene coincides with summer ocean warming and increasing phytoplankton productivity. The Late Holocene is characterized by highly variable winter sea-ice concentrations and a sustained decline in the duration and/or concentration of spring sea ice. Overall diverging trends in GDGT-based TEX86L and RI-OH' subsurface ocean temperatures (SOTs) are found to be linked to opposing spring and summer insolation trends, respectively.Financial support was provided through the Helmholtz Research grant no. VH-NG-1101. Partial support from the centres IDEAL (grant no. FONDAP 15150003) and COPAS (grant nos. AFB170006 and FB210021), Chile, and the Spanish Ministry of Economy, Industry and Competitivity grant no. CTM2017-89711-C2--P, co-funded by the European Union through FEDER funds, is acknowledged. The article processing charges for this open-access publication were covered by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI)

    Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies

    Get PDF
    The past three decades have seen a sustained and coordinated effort to refine the seismic stratigraphic framework of the Antarctic margin that has underpinned the development of numerous geological drilling expeditions from the continental shelf and beyond. Integration of these offshore drilling datasets covering the Cenozoic era with Antarctic inland datasets, provides important constraints that allow us to understand the role of Antarctic tectonics, the Southern Ocean biosphere, and Cenozoic ice sheet dynamics and ice sheet–ocean interactions on global climate as a whole. These constraints are critical for improving the accuracy and precision of future projections of Antarctic ice sheet behaviour and changes in Southern Ocean circulation. Many of the recent advances in this field can be attributed to the community-driven approach of the Scientific Committee on Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) research programme and its two key subcommittees: Paleoclimate Records from the Antarctic Margin and Southern Ocean (PRAMSO) and Palaeotopographic-Palaeobathymetric Reconstructions. Since 2012, these two PAIS subcommittees provided the forum to initiate, promote, coordinate and study scientific research drilling around the Antarctic margin and the Southern Ocean. Here we review the seismic stratigraphic margin architecture, climatic and glacial history of the Antarctic continent following the break-up of Gondwanaland in the Cretaceous, with a focus on records obtained since the implementation of PRAMSO. We also provide a forward-looking approach for future drilling proposals in frontier locations critically relevant for assessing future Antarctic ice sheet, climatic and oceanic change.We thank many people who collaborated, by sharing data and ideas, on geoscience research projects under the umbrella of the highly successful Paleoclimate Records from the Antarctic Margin and Southern Ocean (PRAMSO) and Palaeotopographic-Palaeobathymetric Reconstructions subcommittees of the Scientific Committee on Antarctic Research (SCAR) Past Antarctic Ice Sheet scientific program. This synthesis, which reflects our views, would not have been possible without the efforts of these many investigators, most of whom continue their collaborative Antarctic studies, now under the successor SCAR INSTANT programme. Chris Sorlien is thanked for drafting Fig. 3.6. We thank John Anderson, Peter Barrett, Giuliano Brancolini and Alan Cooper for their useful comments and for their continuous dedication to the past Antarctic Ice Sheet evolution reconstructions. We thank Nigel Wardell, Frank Nitsche and Paolo Diviacco for maintaining the Seismic Data Library System and the National Antarctic funding agencies of many countries (Australia, China, Germany, Italy, Japan, Korea, New Zealand, Russia, Spain, the UK, the United States) for supporting geophysical and geological surveys essential for Paleotopographic and Paleobathymetric reconstructions. We thank the International Ocean Discovery Program (IODP) for its support of recent expeditions that arose out of PRAMSO discussions. R.M. was funded by the Royal Society Te Apārangi NZ Marsden Fund (grant 18-VUW-089). C.E. acknowledges funding by the Spanish Ministry of Economy, Industry and Competitivity (grants CTM2017-89711-C2-1/2-P), cofunded by the European Union through FEDER funds. L.D.S. and F.D. were funded by the Programma Nazionale delle Ricerche in Antartide (PNRA16_00016 project and PNRA 14_00119). R.Larter and C.D.H. were funded by the BAS Polar Science for Planet Earth Programme and NERC UK IODP grant NE/J006548/1. S.K. was supported by the KOPRI Grant (PE21050). L.P. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 792773 WAMSISE. A.S. and S.G. were funded by NSF Office of Polar Programs (Grants OPP-1744970 (A.S.), -1143836 (A.S.), and -1143843 (S.G.). This is University of Texas Institute for Geophysics Contribution #3784. B.D. acknowledges funding from a Rutherford Foundation Postdoctoral Fellowship (RFT-VUW1804-PD). K.G. and G.K. were funded by AWI research programme Polar Regions and Coasts in the changing Earth System (PACES II) and the Sub-EIS-Obs programme by the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). RL, RM, TN acknowledge support from MBIE Antarctic Science Platform contract ANTA1801

    Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ashley, K. E., McKay, R., Etourneau, J., Jimenez-Espejo, F. J., Condron, A., Albot, A., Crosta, X., Riesselman, C., Seki, O., Mass, G., Golledge, N. R., Gasson, E., Lowry, D. P., Barrand, N. E., Johnson, K., Bertler, N., Escutia, C., Dunbar, R., & Bendle, J. A. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Climate of the Past, 17(1), (2021): 1-19, https://doi.org/10.5194/cp-17-1-2021.Over recent decades Antarctic sea-ice extent has increased, alongside widespread ice shelf thinning and freshening of waters along the Antarctic margin. In contrast, Earth system models generally simulate a decrease in sea ice. Circulation of water masses beneath large-cavity ice shelves is not included in current Earth System models and may be a driver of this phenomena. We examine a Holocene sediment core off East Antarctica that records the Neoglacial transition, the last major baseline shift of Antarctic sea ice, and part of a late-Holocene global cooling trend. We provide a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability. Our record, supported by high-resolution ocean modelling, shows that a rapid Antarctic sea-ice increase during the mid-Holocene (∼ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth that slowed basal ice shelf melting. Incorporating this feedback mechanism into global climate models will be important for future projections of Antarctic changes.This research has been supported by the Natural Environment Research Council (CENTA PhD; NE/L002493/1 and Standard Grant Ne/I00646X/1), Japanese Society for the Promotion of Science (JSPS/FF2/60 no. L-11523), NZ Marsden Fund (grant nos. 18-VUW-089 and 15-VUW-131), NSF (grant nos. PLR-1443347 and ACI-1548562), the U.S. Dept. of Energy (grant no. DE-SC0016105), ERC (StG ICEPROXY, 203441; ANR CLIMICE, FP7 Past4Future, 243908), L'Oréal-UNESCO New Zealand For Women in Science Fellowship, University of Otago Research Grant, the IODP U.S. Science Support Program, Spanish Ministry of Science and Innovation (grant no. CTM2017-89711-C2-1-P), and the European Union (FEDER)

    Relative sea-level rise around East Antarctica during Oligocene glaciation

    Get PDF
    During the middle and late Eocene (∼48-34 Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarcticainduced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rosedespite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an icesheet grounding line

    Chronostratigraphic Framework for the IODP Expedition 318 Cores from the Wilkes Land Margin: Constraints for Paleoceanographic Reconstruction

    Get PDF
    [1] The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well‐behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region

    Oxalic acid, versatile peroxidase secretion and chelating ability of Bjerkandera fumosa in rich and limited culture conditions

    Get PDF
    Efficient ligninolytic systems of wood-degrading fungi include not only oxidizing enzymes, but also low-molecular-weight effectors. The ability of Bjerkandera fumosa to secrete oxalic acid and versatile peroxidase (VP) in nitrogen-rich and nitrogen-limited media was studied. Higher activity of VP was determined in the nitrogen-limited media but greater concentration of oxalic acid was observed in the cultures of B. fumosa without nitrogen limitation. Ferric ions chelating ability of Bjerkandera fumosa studied in ferric ions limited media was correlated with the increased level of oxalic acid. The presence of hydroxamate-type siderophores in B. fumosa media were also detected. Oxalate decarboxylase was found to be responsible for regulation of oxalic acid concentration in the tested B. fumosa cultures

    Deglacial and Holocene sea-ice and climate dynamics in the Bransfield Strait, northern Antarctic Peninsula

    Get PDF
    The reconstruction of past sea-ice distribution in the Southern Ocean is crucial for an improved understanding of ice–ocean–atmosphere feedbacks and the evaluation of Earth system and Antarctic ice sheet models. The Antarctic Peninsula (AP) has been experiencing a warming since the start of regular monitoring of the atmospheric temperature in the 1950s. The associated decrease in sea-ice cover contrasts the trend of growing sea-ice extent in East Antarctica. To reveal the long-term sea-ice history at the northern Antarctic Peninsula (NAP) under changing climate conditions, we examined a marine sediment core from the eastern basin of the Bransfield Strait covering the last Deglacial and the Holocene. For sea-ice reconstructions, we focused on the specific sea-ice biomarker lipid IPSO25, a highly branched isoprenoid (HBI), and sea-ice diatoms, whereas a phytoplankton-derived HBI triene (C25:3) and warmer open-ocean diatom assemblages reflect predominantly ice-free conditions. We further reconstruct ocean temperatures using glycerol dialkyl glycerol tetraethers (GDGTs) and diatom assemblages and compare our sea-ice and temperature records with published marine sediment and ice core data. A maximum ice cover is observed during the Antarctic Cold Reversal 13 800–13 000 years before present (13.8–13 ka), while seasonally ice-free conditions permitting (summer) phytoplankton productivity are reconstructed for the late Deglacial and the Early Holocene from 13 to 8.3 ka. An overall decreasing sea-ice trend throughout the Middle Holocene coincides with summer ocean warming and increasing phytoplankton productivity. The Late Holocene is characterized by highly variable winter sea-ice concentrations and a sustained decline in the duration and/or concentration of spring sea ice. Overall diverging trends in GDGT-based TEX86L and RI-OH' subsurface ocean temperatures (SOTs) are found to be linked to opposing spring and summer insolation trends, respectively.</p

    Differential Release and Phagocytosis of Tegument Glycoconjugates in Neurocysticercosis: Implications for Immune Evasion Strategies

    Get PDF
    Neurocysticercosis (NCC) is an infection of the central nervous system (CNS) by the metacestode of the helminth Taenia solium. The severity of the symptoms is associated with the intensity of the immune response. First, there is a long asymptomatic period where host immunity seems incapable of resolving the infection, followed by a chronic hypersensitivity reaction. Since little is known about the initial response to this infection, a murine model using the cestode Mesocestoides corti (syn. Mesocestoides vogae) was employed to analyze morphological changes in the parasite early in the infection. It was found that M. corti material is released from the tegument making close contact with the nervous tissue. These results were confirmed by infecting murine CNS with ex vivo–labeled parasites. Because more than 95% of NCC patients exhibit humoral responses against carbohydrate-based antigens, and the tegument is known to be rich in glycoconjugates (GCs), the expression of these types of molecules was analyzed in human, porcine, and murine NCC specimens. To determine the GCs present in the tegument, fluorochrome-labeled hydrazides as well as fluorochrome-labeled lectins with specificity to different carbohydrates were used. All the lectins utilized labeled the tegument. GCs bound by isolectinB4 were shed in the first days of infection and not resynthesized by the parasite, whereas GCs bound by wheat germ agglutinin and concavalinA were continuously released throughout the infectious process. GCs bound by these three lectins were taken up by host cells. Peanut lectin-binding GCs, in contrast, remained on the parasite and were not detected in host cells. The parasitic origin of the lectin-binding GCs found in host cells was confirmed using antibodies against T. solium and M. corti. We propose that both the rapid and persistent release of tegumental GCs plays a key role in the well-known immunomodulatory effects of helminths, including immune evasion and life-long inflammatory sequelae seen in many NCC patients
    corecore