18 research outputs found

    Cortical functioning in children with developmental coordination disorder:a motor overflow study

    Get PDF
    This study examined brain activation in children with developmental coordination disorder (DCD) to reveal areas that may contribute to poor movement execution and/or abundant motor overflow. Using functional magnetic resonance imaging, 13 boys with DCD (mean age = 9.6 years ±0.8) and 13 typically developing controls (mean age = 9.3 years ±0.6) were scanned performing two tasks (finger sequencing and hand clenching) with their dominant hand, while a four-finger motion sensor recorded contralateral motor overflow on their non-dominant hand. Despite displaying increased motor overflow on both functional tasks during scanning, there were no obvious activation deficits in the DCD group to explain the abundant motor overflow seen. However, children with DCD were found to display decreased activation in the left superior frontal gyrus on the finger-sequencing task, an area which plays an integral role in executive and spatially oriented processing. Decreased activation was also seen in the left inferior frontal gyrus, an area typically active during the observation and imitation of hand movements. Finally, increased activation in the right postcentral gyrus was seen in children with DCD, which may reflect increased reliance on somatosensory information during the execution of complex fine motor tasks

    Effects of inspiratory muscle training in children with cerebral palsy: a randomized controlled trial

    No full text
    Respiratory muscle weakness and its relation to other impairments in children with cerebral palsy (CP) have been shown in the latest studies. The effects of inspiratory muscle training (IMT) in this population have not been comprehensively investigated so far

    Metabolomics and physiological insights into the ability of exogenously applied chlorogenic acid and hesperidin to modulate salt stress in lettuce distinctively

    No full text
    Recent studies in the agronomic field indicate that the exogenous application of polyphenols can provide tolerance against various stresses in plants. However, the molecular processes underlying stress mitigation remain unclear, and little is known about the impact of exogenously applied phenolics, especially in combination with salinity. In this work, the impacts of exogenously applied chlorogenic acid (CA), hesperidin (HES), and their combination (HES + CA) have been investigated in lettuce (Lactuca sativa L.) through untargeted metabolomics to evaluate mitigation effects against salinity. Growth parameters, physiological measurements, leaf relative water content, and osmotic potential as well as gas exchange parameters were also measured. As expected, salinity produced a significant decline in the physiological and biochemical parameters of lettuce. However, the treatments with exogenous phenolics, particularly HES and HES + CA, allowed lettuce to cope with salt stress condition. Interestingly, the treatments triggered a broad metabolic reprogramming that involved secondary metabolism and small molecules such as electron carriers, enzyme cofactors, and vitamins. Under salinity conditions, CA and HES + CA distinctively elicited secondary metabolism, nitrogen-containing compounds, osmoprotectants, and polyamines

    The combination of mild salinity conditions and exogenously applied phenolics modulates functional traits in lettuce

    No full text
    The quest for sustainable strategies aimed at increasing the bioactive properties of plantbased foods has grown quickly. In this work, we investigated the impact of exogenously applied phenolics, i.e., chlorogenic acid (CGA), hesperidin (HES), and their combinations (HES + CGA), on Lactuca sativa L. grown under normal-and mild-salinity conditions. To this aim, the phenolic profile, antioxidant properties, and enzyme inhibitory activity were determined. The untargeted metabolomics profiling revealed that lettuce treated with CGA under non-stressed conditions exhibited the highest total phenolic content (35.98 mg Eq./g). Lettuce samples grown under salt stress showed lower phenolic contents, except for lettuce treated with HES or HES + CGA, when comparing the same treatment between the two conditions. Furthermore, the antioxidant capacity was investigated through DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,20-azinobis-(3-ethylbenzothiazoline6-sulfonate)), and FRAP (ferric reducing antioxidant power) assays, coupled with metal-chelating activity and phosphomolybdenum capacity. An exciting increase in radical scavenging capacity was observed in lettuce treated with exogenous phenolics, in both stress and non-stress conditions. The inhibitory activity of the samples was evaluated against target health-related enzymes, namely cholinesterases (acetylcholinesterase; AChE; butyryl cholinesterase; BChE), tyrosinase, α-amylase, and α-glucosidase. Lettuce treated with HES + CGA under non-stress conditions exhibited the strongest inhibition against AChE and BChE, while the same treatment under salinity conditions resulted in the highest inhibition capacity against α-amylase. Additionally, CGA under non-stress conditions exhibited the best inhibitory effect against tyrosinase. All the functional traits investigated were significantly modulated by exogenous phenolics, salinity, and their combination. In more detail, flavonoids, lignans, and stilbenes were the most affected phenolics, whereas glycosidase enzymes and tyrosinase activity were the most affected among enzyme assays. In conclusion, the exogenous application of phenolics to lettuce represents an effective and green strategy to effectively modulate the phenolic profile, antioxidant activity, and enzyme inhibitory effects in lettuce, deserving future application to produce functional plant-based foods in a sustainable way
    corecore