254 research outputs found

    TI6AL4V Surface Modification by Hydroxyapatite Powder Mixed Electric Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electric Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfaces for TI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    Powder Mixed Electrical Discharge Machining and Biocompatibility: A State of the Art Review

    Get PDF
    Electrical Discharge Machining (EDM) is a well-known process for machining of difficult to cut materials. Along with adding the powder in dielectric liquid, change in properties of machining gap results in a variety of sparks forms and lead different mechanisms under specific operational conditions during machining. The discharge models significantly differ from conventional EDM and leave its characteristics surface features. Primary studies of Powder Mixed Electrical Discharge Machining (PMEDM) focused on the understanding of material removal rate, surface quality, and tool wear rate concerning the widespread of the operational conditions evolved in the process. Then, the interactions with the powder material during discharging and the resultant surface properties impel the researcher's interest to achieve functional surfaces. In this respect, PMEDM is a significant concern in recent years as an alternative and simple production technique to obtain functional surfaces for specific needs. Nowadays, among the specific needs, production of biocompatible surfaces with the use of the technique provides a challenging opportunity to the researchers to address osseointegration issues. The study presents an introduction and review of the research work in PMEDM. The studies concerning machining efficiency, surface integrity, and generation of functional surfaces are presented and discussed in the light of current research trends. Attempts made to improve biocompatible surfaces with the use of the process also included to clarify the future trends in PMEDM

    Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electrical Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfacesforTI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    TI6AL4V Surface Modification by Hydroxyapatite Powder Mixed Electric Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electric Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfaces for TI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    Particle Migration and Surface Modification on Ti6Al4V in SiC Powder Mixed Electrical Discharge Machining

    Get PDF
    The study examines the impact of SiC powder concentration on surface topography, particles deposition and subsurface structures in powder mixed electrical discharge machining (PMEDM) of Ti-6Al-4V-ELI work material. It was observed that low pulse currents and high suspended particle concentration in dielectric liquid enhance the material transfer mechanism in particulate form. The subsurface properties of such surfaces exhibited a distinctive and harder re-solidified layer structure that indicates a unique material transfer mechanism takes place during machining. The particles placed close to a discharge column directed towards the melted metal pool due to the sudden closure of the plasma channel. When the main discharge channel subdivided into several secondary discharges, the suspended particles in dielectric liquid stuck among the scattered sub discharges and increased the probability of penetrating into the melted metal pool at the end of a discharge. Therefore, the formation of secondary discharges favoured the improved SiC transfer in particulate form. However, increasing the pulse current deplete the material transfer mechanism in particulate form due to the inadequacy of secondary discharges

    Analyzing Complex Problem Solving by Dynamic Brain Networks

    Get PDF
    Complex problem solving is a high level cognitive task of the human brain, which has been studied over the last decade. Tower of London (TOL) is a game that has been widely used to study complex problem solving. In this paper, we aim to explore the underlying cognitive network structure among anatomical regions of complex problem solving and its subtasks, namely planning and execution. A new computational model for estimating a brain network at each time instant of fMRI recordings is proposed. The suggested method models the brain network as an Artificial Neural Network, where the weights correspond to the relationships among the brain anatomic regions. The first step of the model is preprocessing that manages to decrease the spatial redundancy while increasing the temporal resolution of the fMRI recordings. Then, dynamic brain networks are estimated using the preprocessed fMRI signal to train the Artificial Neural Network. The properties of the estimated brain networks are studied in order to identify regions of interest, such as hubs and subgroups of densely connected brain regions. The representation power of the suggested brain network is shown by decoding the planning and execution subtasks of complex problem solving. Our findings are consistent with the previous results of experimental psychology. Furthermore, it is observed that there are more hubs during the planning phase compared to the execution phase, and the clusters are more strongly connected during planning compared to execution

    Surface preparation of powder metallurgical tool steels by means of wire electrical discharge machining

    Get PDF
    The surface of two types of powder metallurgical (PM) tool steels (i.e., with and without nitrogen) was prepared using wire electrical discharge machining (WEDM). From each grade of tool steel, seven surfaces corresponding to one to seven passes of WEDM were prepared. The WEDM process was carried out using a brass wire as electrode and deionized water as dielectric. After eachWEDM pass the surface of the tool steels was thoroughly examined. Surface residual stresses were measured by the X-ray diffraction (XRD) technique. The measured stresses were found to be of tensile nature. The surface roughness of the WEDM specimens was measured using interference microscopy. The surface roughness as well as the residual stress measurements indicated an insignificant improvement of these parameters after four passes of WEDM. In addition, the formed recast layer was characterized by means of scanning electron microscopy (SEM), XRD, and X-ray photoelectron spectroscopy (XPS). The characterization investigation clearly shows diffusion of copper and zinc from the wire electrode into the work material, even after the final WEDM step. Finally, the importance of eliminating excessive WEDM steps is thoroughly discussed

    LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers

    Get PDF
    This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).Peer ReviewedPostprint (author's final draft

    Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myeloperoxidase (MPO) -containing macrophages and neutrophils have been described at sites of plaque rupture. The presence of these cells in precursor lesions to acute rupture (thin cap atheroma, or vulnerable plaque) and within thrombi adjacent to ruptures has not been described, nor an association with iron-containing macrophages within unstable plaques.</p> <p>Methods</p> <p>We studied 61 acute ruptures, 15 organizing ruptures, 31 thin cap fibroatheromas, and 28 fibroatheromas from 72 sudden coronary death victims by immunohistochemical and histochemical techniques. Inflammatory cells were typed with anti-CD68 (macrophages), anti-BP-30 (neutrophil bactericidal glycoprotein), and anti-MPO. Iron was localized by Mallory's Prussian blue stain. In selected plaques alpha smooth muscle actin (DAKO, Carpinteria, CA, clone M0851) was performed.</p> <p>Results</p> <p>MPO positive cells were present in 79% of ruptured caps, 28% of thin cap fibroatheroma, and no fibroatheromas; neutrophils were present in 72% of ruptures, 8% of thin cap fibroatheromas, and no fibroatheromas. Iron containing foam cells were present in the caps of 93% of acute ruptures, of 85% of organizing ruptures, 20% of thin cap atheromas, and 10% of fibroatheromas. MPO positive cells were more frequent in occlusive than non-occlusive thrombi adjacent to ruptures (p = .006) and were more numerous in diabetics compared to non-diabetics (p = .002)</p> <p>Conclusion</p> <p>Unstable fibrous caps are more likely to contain MPO-positive cells, neutrophils, and iron-containing macrophages than fibrous caps of stable fibroatheromas. MPO-positive cells in thrombi adjacent to disrupted plaques are associated with occlusive thrombi and are more numerous in diabetic patients.</p
    • …
    corecore