1,901 research outputs found
Photochemistry in the arctic free troposphere: Ozone budget and its dependence on nitrogen oxides and the production rate of free radicals
Abstract. Local ozone production and loss rates for the arctic free troposphere (58–85 ◦ N, 1–6 km, February–May) during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 km layer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratios up to ∼300 pptv in February and for NOx mixing ratio
The Hypothesis of Locality and its Limitations
The hypothesis of locality, its origin and consequences are discussed. This
supposition is necessary for establishing the local spacetime frame of
accelerated observers; in this connection, the measurement of length in a
rotating system is considered in detail. Various limitations of the hypothesis
of locality are examined.Comment: LaTeX file, no figures, 14 pages, to appear in: "Relativity in
Rotating Frames", edited by G. Rizzi and M.L. Ruggiero (Kluwer Academic
Publishers, Dordrecht, 2003
Recommended from our members
An investigation of South Pole HOx chemistry: Comparison of model results with ISCAT observations
Unexpected high levels of OH and NO were recorded at the South Pole (SP) Atmospheric Research Observatory during the 1998-99 ISCAT field study. Model simulations suggest a major photochemical linkage between observed OH and NO. A detailed comparison of the observations with model predictions revealed good agreement for OH at NO levels between 120 and 380 pptv. However, the model tended to overestimate OH for NO levels < 120 pptv, while it underestimated OH at levels > 380 pptv. The reasons for these deviations appear not to involve NO directly but rather HOx radical scavenging for the low NO conditions and additional HOx sources for the high NO conditions. Because of the elevated levels of NO and highly activated HOx photochemistry, the SP was found to be a strong net source of surface ozone. It is quite likely that the strong oxidizing environment found at the South Pole extends over the entire polar plateau
On the IYB-property in some solvable groups
A finite group G is called Involutive Yang-Baxter (IYB) if there exists a bijective 1-cocycle χ:G⟶M for some ZG -module M. It is known that every IYB-group is solvable, but it is still an open question whether the converse holds. A characterization of the IYB property by the existence of an ideal I in the augmentation ideal ωZG complementing the set 1−G leads to some speculation that there might be a connection with the isomorphism problem for ZG . In this paper we show that if N is a nilpotent group of class two and H is an IYB-group of order coprime to that of N, then N⋊H is IYB. The class of groups that can be obtained in that way (and hence are IYB) contains in particular Hertweck’s famous counterexample to the isomorphism conjecture as well as all of its subgroups. We then investigate what an IYB structure on Hertweck’s counterexample looks like concretely
Recommended from our members
Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer
Extensive chemical characterization of ozone (O3) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March-May 2000 enables analysis of the coupled chemical evolution of bromine (BrOx), chlorine (ClOx), hydrogen oxide (HOx) and nitrogen oxide (NOx) radicals during these events. We project the TOPSE observations onto an O3 chemical coordinate to construct a chronology of radical chemistry during O3 depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClOx chemistry is only active during the early stage Of O3 depletion (O3 > 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O3 decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O3 depletion and we explain both trends on the basis of the reaction of CH2O with Br. Observed NOx concentrations decline abruptly in the early stages Of O3 depletion and recover as O3 drops below 10 ppbv. We attribute the initial decline to BrNO3 hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO3 formation as O3 drops. Under halogen-free conditions we find that HNO4 heterogeneous chemistry could provide a major NOx sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere
Investigations into free tropospheric new particle formation in the central Canadian arctic during the winter/spring transition as part of TOPSE
In this paper, we investigate the role of in situ new particle production in the central Canadian sub-Arctic and Arctic as part of the TOPSE experiment. Airborne measurements conducted primarily in the free troposphere were made from 50° to 90°W longitude and 60° to 85°N latitude during the period from February to May 2000. Data pertinent to this paper include 3–4 nm diameter (Dp) particles, ultrafine condensation nuclei (Dp \u3e 3 nm), fine particles (0.2 \u3c Dp \u3c 3 μm), and the possible nucleation precursor, sulfuric acid, and its precursor, sulfur dioxide. For data averaged over this period, most species showed little evidence for a latitudinal trend. Fine aerosol number concentrations, however, showed a slight increase with latitude. The evolution of various species concentrations over the period of the study show that fine particles also had a consistent temporal trend, increasing at all altitudes from February to May, whereas sulfur dioxide at the surface tended to peak in late March. Ultrafine condensation nuclei and 3–4 nm particles showed no temporal trends. Little evidence for in situ new particle production was observed during the study, except for one atypical event where SO2concentrations were 3.5 ppbv, 2 orders of magnitude higher than typical levels. This paper cannot address the question of whether the observed condensation nuclei were produced in situ by a low particle production rate or transported from lower latitudes
- …