120,626 research outputs found

    On the Electronic Energy of a One-electron Diatomic Molecule near the United Atom

    Get PDF
    Electric energy behavior for ground state of one-electron heteronuclear diatomic molecule near united ato

    Study of a quasi-microscope design for planetary landers

    Get PDF
    The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera

    Fundamental frequency height as a resource for the management of overlap in talk-in-interaction.

    Get PDF
    Overlapping talk is common in talk-in-interaction. Much of the previous research on this topic agrees that speaker overlaps can be either turn competitive or noncompetitive. An investigation of the differences in prosodic design between these two classes of overlaps can offer insight into how speakers use and orient to prosody as a resource for turn competition. In this paper, we investigate the role of fundamental frequency (F0) as a resource for turn competition in overlapping speech. Our methodological approach combines detailed conversation analysis of overlap instances with acoustic measurements of F0 in the overlapping sequence and in its local context. The analyses are based on a collection of overlap instances drawn from the ICSI Meeting corpus. We found that overlappers mark an overlapping incoming as competitive by raising F0 above their norm for turn beginnings, and retaining this higher F0 until the point of overlap resolution. Overlappees may respond to these competitive incomings by returning competition, in which case they raise their F0 too. Our results thus provide instrumental support for earlier claims made on impressionistic evidence, namely that participants in talk-in-interaction systematically manipulate F0 height when competing for the turn

    Matter formed at the BNL relativistic heavy ion collider

    Full text link
    We suggest that the "new form of matter" found just above TcT_c by RHIC is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of π\pi, σ\sigma, ρ\rho and a1a_1. Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at TcT_c just as they do from below TcT_c as predicted by the vector manifestation (VM in short) of hidden local symmetry. This could explain the rapid rise in entropy up to TcT_c found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue.Comment: Final versio

    Investigation of integrating sphere measurement parameters

    Get PDF
    Directional and bidirectional reflectance of MgO sphere wall coatings, and directional characteristics of photomultiplier tub

    Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral

    Get PDF
    The INSPIRAL program is the LIGO Scientific Collaboration's computational engine for the search for gravitational waves from binary neutron stars and sub-solar mass black holes. We describe how this program, which makes use of the FINDCHIRP algorithm (discussed in a companion paper), is integrated into a sophisticated data analysis pipeline that was used in the search for low-mass binary inspirals in data taken during the second LIGO science run.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravity for the special issue of the GWDAW9 Proceeding
    corecore