1,461 research outputs found
Boundary-Layer Similar Solutions for Equilibrium Dissociated Air and Application to the Calculation of Laminar Heat-Transfer Distribution on Blunt Bodies in High-Speed Flow
No abstract availabl
The effect of real-air properties upon aerodynamic forces, moments, and heat transfer rates for reentry vehicles
Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer
One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented
Computer program for compressible laminar or turbulent nonsimilar boundary layers
Description of computer program for solving two dimensional and axisymmetric forms of compressible boundary layer equations for continuity, mean momentum, and mean total enthalp
Improved Si:As BIBIB (Back-Illuminated Blocked-Impurity-Band) hybrid arrays
Results of a program to increase the short wavelength (less than 10 microns) detective quantum efficiency, eta/beta, of Si:As Impurity Band Conduction arrays are presented. The arrays are epitaxially grown Back-Illuminated Blocked (BIB) Impurity-Band (BIBIB) 10x50 detectors bonded to switched-FET multiplexers. It is shown that the 4.7 microns detective quantum efficiency increases proportionately with the thickness of the infrared active layer. A BIB array with a thick active layer, designed for low dark current, exhibits eta/beta = 7 to 9 percent at 4.7 microns for applied bias voltages between 3 and 5 V. The product of quantum efficiency and photoelectric gain, etaG, increases from 0.3 to 2.5 as the voltage increases from 3 to 5 V. Over this voltage range, the dark current increases from 8 to 120 e(-)s(-1) at a device temperature of 4.2 K and is under 70 e(-)s(-1) for all voltages at 2 K. Because of device gain, the effective dark current (equivalent photon rate) is less than 3 e(-)s(-1) under all operating conditions. The effective read noise (equivalent photon noise) is found to be less than 12 electrons under all operating conditions and for integration times between 0.05 and 100 seconds
H_2 morphology of young planetary nebulae
The distributions of H_2 1-0 S(l) emission in the young planetary nebulae BD +30°3639 and NGC 7027 show striking similarities: both have limb-brightened arcs of H_2 emission with radii that are about twice those of their H II regions. The extended H_2 emission in both nebulae is attributed to a photodissociation region. This implies that the neutral envelopes of these young planetaries extend well beyond the edge of the H II region, in contrast to older nebulae where the ionized and molecular gas are more nearly coextensive. The contrast between young and old planetaries can only be explained if the molecular envelope is inhomogeneous. We endorse a scenario for the evolution of a planetary nebula in which a photodissociation front propagates through the clumpy molecular envelope, leaving the ionized core embedded in an envelope of partially ionized atomic gas and dense molecular knots. In an evolved planetary, the H II region has expanded to engulf some of the dense molecular knots, which can be identified with bright [O I] and H_2 1-0 S(l) condensations, while the remnant of the photodissociated envelope may be detected as a faint optical halo
A spatially resolved photodissociation region in the planetary nebula NGC 7027
High spatial resolution, narrow band, infrared line images and CO (1—0) mm interferometer data are presented for NGC 7027. These data trace emission from the central H II region (Brɑ), the intermediate photodissociation region [H_2 1—0S(1) and 3.3 µm dust feature], and the molecular circumstellar envelope [CO (1—0)]. The H II region lies in a cavity in the CO envelope, and consists of a smooth elliptical shell. A striking change of morphology is seen in the H_2 emission and the dust feature. The H_2 1—0 S(l) emission is composed of two components: (1) an incomplete elliptical ring of knots which bounds the ionized gas; (2) a remarkable thin shell which loops around the H II region with fourfold symmetry. The dust emission is similar to that from the ionized gas, but is displaced further from the center, and extends at low surface brightness into four “ears” which fill in the bays delineated by the outermost loops of H_2 emission. No 3.3 µm emission is detectable beyond the outer H_2 shell. The outer loops of H_2 emission and the 3.3 µm emission occupy the region between the edge of the H II region and the inner edge of the molecular gas. It is natural to ascribe the morphology of NGC 7027 to a photodissociation region which separates the ionized and molecular gas. If this is correct then the exterior H_2 loops are due to molecular gas heated by the far-UV emission escaping from the H II region, and delineate a photodissociation front. The H_2 and CO kinematics rule out shock excitation of the H_2 emission and favor UV excitation
Moderate Resolution Spectroscopy For The Space Infrared Telescope Facility (SIRTF)
A conceptual design for an infrared spectrometer capable of both low resolution (λ/Δ-λ = 50; 2.5-200 microns) and moderate resolution (1000; 4-200 microns) and moderate resolution (1000; 4-200 microns) has been developed. This facility instrument will permit the spectroscopic study in the infrared of objects ranging from within the solar system to distant galaxies. The spectroscopic capability provided by this instrument for SIRTF will give astronomers orders of magnitude greater sensitivity for the study of faint objects than had been previously available. The low resolution mode will enable detailed studies of the continuum radiation. The moderate resolution mode of the instrument will permit studies of a wide range of problems, from the infrared spectral signatures of small outer solar system bodies such as Pluto and the satellites of the giant planets, to investigations of more luminous active galaxies and QS0s at substantially greater distances. A simple design concept has been developed for the spectrometer which supports the science investigation with practical cryogenic engineering. Operational flexibility is preserved with a minimum number of mechanisms. The five modules share a common aperture, and all gratings share a single scan mechanism. High reliability is achieved through use of flight-proven hardware concepts and redundancy. The design controls the heat load into the SIRTF cryogen, with all heat sources other than the detectors operating at 7K and isolated from the 4K cold station. Two-dimensional area detector arrays are used in the 2.5-120μm bands to simultaneously monitor adjacent regions in extended objects and to measure the background near point sources
Spectrophotometrically Identified stars in the PEARS-N and PEARS-S fields
Deep ACS slitless grism observations and identification of stellar sources
are presented within the Great Observatories Origins Deep Survey (GOODS) North
and South fields which were obtained in the Probing Evolution And Reionization
Spectroscopically (PEARS) program. It is demonstrated that even low resolution
spectra can be a very powerful means to identify stars in the field, especially
low mass stars with stellar types M0 and later. The PEARS fields lay within the
larger GOODS fields, and we used new, deeper images to further refine the
selection of stars in the PEARS field, down to a magnitude of mz = 25 using a
newly developed stellarity parameter. The total number of stars with reliable
spectroscopic and morphological identification was 95 and 108 in the north and
south fields respectively. The sample of spectroscopically identified stars
allows constraints to be set on the thickness of the Galactic thin disk as well
as contributions from a thick disk and a halo component. We derive a thin disk
scale height, as traced by the population of M4 to M9 dwarfs along two
independent lines of sight, of h_thin = 370 +60/-65 pc. When including the more
massive M0 to M4 dwarf population, we derive h_thin = 300 +/- 70pc. In both
cases, we observe that we must include a combination of thick and halo
components in our models in order to account for the observed numbers of faint
dwarfs. The required thick disk scale height is typically h_thick=1000 pc and
the acceptable relative stellar densities of the thin disk to thick disk and
the thin disk to halo components are in the range of 0.00025<f_halo<0.0005 and
0.05<f_thick<0.08 and are somewhat dependent on whether the more massive M0 to
M4 dwarfs are included in our sample
Structure and Evolution of Nearby Stars with Planets. I. Short-Period Systems
Using the Yale stellar evolution code, we have calculated theoretical models
for nearby stars with planetary-mass companions in short-period nearly circular
orbits: 51 Pegasi, Tau Bootis, Upsilon Andromedae, Rho Cancri, and Rho Coronae
Borealis. We present tables listing key stellar parameters such as mass,
radius, age, and size of the convective envelope as a function of the
observable parameters (luminosity, effective temperature, and metallicity), as
well as the unknown helium fraction. For each star we construct best models
based on recently published spectroscopic data and the present understanding of
galactic chemical evolution. We discuss our results in the context of planet
formation theory, and, in particular, tidal dissipation effects and stellar
metallicity enhancements.Comment: 48 pages including 13 tables and 5 figures, to appear in Ap
- …
